Bài tập Hình học Lớp 7 ôn tập nghỉ dịch Covid

doc 2 trang thaodu 3620
Bạn đang xem tài liệu "Bài tập Hình học Lớp 7 ôn tập nghỉ dịch Covid", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docbai_tap_hinh_hoc_lop_7_on_tap_nghi_dich_covid.doc

Nội dung text: Bài tập Hình học Lớp 7 ôn tập nghỉ dịch Covid

  1. Bài tập Bài 1: Cho tam gi¸c ABC c©n ë A . KÎ BE vµ CF lÇn l­ît vu«ng gãc víi AC vµ AB ( E AC ; F AB ) a) Chøng minh r»ng BE =CF vµ gãc ABE = gãc ACF b) Gäi I lµ giao ®iÓm cña BE vµ CF, chøng minh r»ng IE = IF c) Chønh minh AI lµ tia ph©n gi¸c cña gãc A. Bài 2: Cho tam giaùc ABC coù AB = AC . Goïi M laø trung ñieåm cuûa BC (MB=MC) . a/ Chöùng minh : ABM ACM . b/ Chöùng minh : AM laø tia phaân giaùc cuûa B AC . c/ Treân tia ñoái cuûa tia MA laáy ñieåm D sao cho MD=MA . Chöùng minh : AB // CD. Bài 3: Cho tam giác cân ABC (AB = AC), có Â =1000. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường vuông góc với BD cắt BC ở I. a) Chứng minh BA = BI. b) Trên tia đối của tia DB lấy điểm K sao cho DK = DA. Chứng minh tam giác AIK là tam giác đều. c) Tính các góc của tam giác BCK. Bài 4: Cho tam giác ABC có Aˆ 900 và đường phân giác BH ( H AC). Kẻ HM vuông góc với BC ( M BC). Gọi N là giao điểm của AB và MH. Chứng minh: a) Tam giác ABH bằng tam giác MBH. b) BH là đường trung trực của đoạn thẳng AM . c) AM // CN. d) BH  CN Bài 5: Cho tam giác ABC vuông tại C có Aˆ 600 và đường phân giác của góc BAC cắt BC tại E. Kẻ EK AB tại K(K AB). Kẻ BD vuông góc với AE ta D ( D AE). Chứng minh: a) Tam giác ACE bằng tam giác AKE. b)AE là đường trung trực của đoạn thẳng CK. c) KA = KB. Bài 6: Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB . Chứng minh: a) EDB = EIB b) HB = BF c) DB<BF d) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng. Bài 7: Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC ( E BC) . Đường thẳng EH và BA cắt nhau tại I . a) Chứng minh rẳng : ΔABH = ΔEBH b) Chứng minh BH là trung trực của AE c) So sánh HA và HC. d) Chứng minh BH vuông góc với IC. Có nhận xét gì về tam giác IBC. Bài 8: Cho tam giác ABC vuông tại A, AB = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh: a) AH = CK b) HK= BH + CK
  2. Bài tập