Bài tập trắc nghiệm môn Hình học Lớp 12: Tọa độ trong không gian
Bạn đang xem tài liệu "Bài tập trắc nghiệm môn Hình học Lớp 12: Tọa độ trong không gian", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_tap_trac_nghiem_mon_hinh_hoc_lop_12_toa_do_trong_khong_g.doc
Nội dung text: Bài tập trắc nghiệm môn Hình học Lớp 12: Tọa độ trong không gian
- TỌA ĐỘ TRONG KHÔNG GIAN Câu 1. Gọi là góc giữa hai vectơ a và b , với a và b khác 0 , khi đó cos bằng a.b a.b a.b a b A. . B. . C. . D. . a . b a . b a . b a . b Câu 2. Gọi là góc giữa hai vectơ a 1;2;0 và b 2;0; 1 , khi đó cos bằng 2 2 2 A. 0. B. . C. . D. . 5 5 5 Câu 3. Cho vectơ a 1;3;4 , tìm vectơ b cùng phương với vectơ a A. b 2; 6; 8 . B. b 2; 6;8 . C. b 2;6;8 . D. b 2; 6; 8 . Câu 4. Tích vô hướng của hai vectơ a 2;2;5 ,b 0;1;2 trong không gian bằng A. 10. B. 13.C. 12.D. 14. Câu 5. Trong không gian cho hai điểm A 1;2;3 , B 0;1;1 , độ dài đoạn AB bằng A. 6. B. 8. C. 10. D. 12. Câu 6. Trong không gian Oxyz , gọi i, j,k là các vectơ đơn vị, khi đó với M x; y; z thì OM bằng A. xi y j zk. B. xi y j zk. C. x j yi zk. D. xi y j zk. Câu 7. Tích có hướng của hai vectơ a (a1;a2 ;a3 ) ,b (b1;b2 ;b3 ) là một vectơ, kí hiệu a,b , được xác định bằng tọa độ A. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . B. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . C. a2b3 a3b2 ;a3b1 a1b3;a1b2 a2b1 . D. a2b2 a3b3;a3b3 a1b1;a1b1 a2b2 . Câu 8. Cho các vectơ u u1;u2 ;u3 và v v1;v2 ;v3 , u.v 0 khi và chỉ khi A. u1v1 u2v2 u3v3 1 . B. u1 v1 u2 v2 u3 v3 0 . C. u1v1 u2v2 u3v3 0 . D.u1v2 u2v3 u3v1 1 . Câu 9. Cho vectơ a 1; 1;2 , độ dài vectơ a là A. . 6 B. 2. C. . 6 D. 4. Câu 10. Trong không gian Oxyz , cho điểm M nằm trên trục Ox sao cho M không trùng với gốc tọa độ, khi đó tọa độ điểm M có dạng A. M a;0;0 ,a 0 . B. M 0;b;0 ,b 0 . C. M 0;0;c ,c 0 . D. M a;1;1 ,a 0 . Câu 11. Trong không gian Oxyz , cho điểm M nằm trên mặt phẳng Oxy sao cho M không trùng với gốc tọa độ và không nằm trên hai trục Ox,Oy , khi đó tọa độ điểm M là (a,b,c 0 ) A. 0;b;a . B. a;b;0 . C. 0;0;c . D. a;1;1 Câu 12. Trong không gian Oxyz , cho a 0;3;4 và b 2 a , khi đó tọa độ vectơ b có thể là A. 0;3;4 . B. 4;0;3 . C. 2;0;1 . D. 8;0; 6 . GV: LÊ XUÂN TOÀN – DĐ: 0975851198
- Câu 13. Trong không gian Oxyz cho hai vectơ u và v , khi đó u,v bằng A. u . v .sin u,v . B. u . v .cos u,v . C. u.v.cos u,v . D. u.v.sin u,v . Câu 14. Trong không gian Oxyz cho ba vectơ a 1; 1;2 ,b 3;0; 1 ,c 2;5;1 , vectơ m a b c có tọa độ là A. 6;0; 6 . B. 6;6;0 . C. 6; 6;0 . D. 0;6; 6 . Câu 15. Trong không gian Oxyz cho ba điểm A 1;0; 3 , B 2;4; 1 ,C 2; 2;0 . Độ dài các cạnh AB, AC, BC của tam giác ABC lần lượt là A. 21, 13, 37 . B. 11, 14, 37 . C. 21, 14, 37 . D. 21, 13, 35 . Câu 16. Trong không gian Oxyz cho ba điểm A 1;0; 3 , B 2;4; 1 ,C 2; 2;0 . Tọa độ trọng tâm G của tam giác ABC là 5 2 4 5 2 4 5 A. ; ; . B. ; ; . C. 5;2;4 . D. ;1; 2 . 3 3 3 3 3 3 2 Câu 17. Trong không gian Oxyz cho ba điểm A 1;2;0 , B 1;1;3 ,C 0; 2;5 . Để 4 điểm A, B,C, D đồng phẳng thì tọa độ điểm D là A. D 2;5;0 . B. D 1;2;3 . C. D 1; 1;6 . D. D 0;0;2 . Câu 18. Trong không gian Oxyz , cho ba vecto a (1;2;3),b ( 2;0;1),c ( 1;0;1) . Tìm tọa độ của vectơ n a b 2c 3i A. n 6;2;6 . B. n 6;2; 6 . C. n 0;2;6 . D. n 6;2;6 . Câu 19. Trong không gian Oxyz , cho tam giác ABC có A(1;0;2), B( 2;1;3),C(3;2;4) . Tìm tọa độ trọng tâm G của tam giác ABC 2 1 A. G ;1;3 . B. G 2;3;9 . C. G 6;0;24 . D. G 2; ;3 . 3 3 Câu 20. Cho 3 điểm M 2;0;0 , N 0; 3;0 , P 0;0;4 . Nếu MNPQ là hình bình hành thì tọa độ của điểm Q là A. Q 2; 3;4 B. Q 2;3;4 C. Q 3;4;2 D. Q 2; 3; 4 Câu 21. Trong không gian tọa độ Oxyz cho ba điểm M 1;1;1 , N 2;3;4 , P 7;7;5 . Để tứ giác MNPQ là hình bình hành thì tọa độ điểm Q là A. Q 6;5;2 . B. Q 6;5;2 . C. Q 6; 5;2 . D. Q 6; 5; 2 . Câu 22. Cho 3 điểm A 1;2;0 , B 1;0; 1 , C 0; 1;2 . Tam giác ABC là A. tam giác có ba góc nhọn. B. tam giác cân đỉnh A . C. tam giác vuông đỉnh A .D. tam giác đều. Câu 23. Trong không gian tọa độ Oxyz cho ba điểm A 1;2;2 , B 0;1;3 ,C 3;4;0 . Để tứ giác ABCD là hình bình hành thì tọa độ điểm D là A. .D 4;5;B. 1 . C. .D 4;5D.; 1. D 4; 5; 1 D 4; 5;1 Câu 24. Cho hai vectơ a và b tạo với nhau góc 600 và a 2; b 4 . Khi đó a b bằng GV: LÊ XUÂN TOÀN – DĐ: 0975851198
- A. 8 3 20. B. 2 7. C. 2 5. D. 2 . Câu 25. Cho điểm M 1;2; 3 , khoảng cách từ điểm M đến mặt phẳng Oxy bằng A. 2. B. . 3 C. 1. D. 3. Câu 26. Cho điểm M 2;5;0 , hình chiếu vuông góc của điểm M trên trục Oy là điểm A. M 2;5;0 . B. M 0; 5;0 . C. M 0;5;0 . D. M 2;0;0 . Câu 27. Cho điểm M 1;2; 3 , hình chiếu vuông góc của điểm M trên mặt phẳng Oxy là điểm A. M 1;2;0 . B. M 1;0; 3 . C. M 0;2; 3 . D. M 1;2;3 . Câu 28. Cho điểm M 2;5;1 , khoảng cách từ điểm M đến trục Ox bằng A. 29 . B. .C.5 2.D. . 26 Câu 29. Cho hình chóp tam giác S.ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng A. IA IB IC. B. IA IB CI 0. C. IA BI IC 0. D. IA IB IC 0. Câu 30. Trong không gian Oxyz , cho 3 vectơ a 1;1;0 ; b 1;1;0 ; c 1;1;1 . Trong các mệnh đề sau, mệnh đề nào sai: A. b c. B. a 2. C. c 3. D. a b. Câu 31. Cho điểm M 3;2; 1 , điểm đối xứng của M qua mặt phẳng Oxy là điểm A. .M 3; 2;B.1 . C. . M 3; D.2; .1 M 3;2;1 M 3;2;0 Câu 32. Cho điểm M 3;2; 1 , điểm M a;b;c đối xứng của M qua trục Oy , khi đó a b c bằng A. 6. B. 4. C. 0. D. 2. Câu 33. Cho u 1;1;1 và v 0;1;m . Để góc giữa hai vectơ u,v có số đo bằng 450 thì m bằng A. . 3 B. . 2 3 C. . 1D. .3 3 Câu 34. Cho A 1; 2;0 , B 3;3;2 ,C 1;2;2 , D 3;3;1 . Thể tích của tứ diện ABCD bằng A. 5. B. 4. C. 3. D. 6. Câu 35. Trong không gian Oxyz cho tứ diện ABCD . Độ dài đường cao vẽ từ D của tứ diện ABCD cho bởi công thức nào sau đây: 1 AB, AC .AD 1 AB, AC .AD AB, AC .AD AB, AC .AD A. h . B. h . C. h D. h . 3 AB.AC 3 AB.AC AB.AC AB.AC Câu 36. Trong không gian tọa độ Oxyz , cho bốn điểm A 1; 2;0 , B 3;3;2 ,C 1;2;2 , D 3;3;1 . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng ABC là 9 9 9 9 A. . B. . C. . D. . 7 2 7 2 14 Câu 37. Trong không gian Oxyz , cho tứ diện ABCD có A(1;0;2), B( 2;1;3),C(3;2;4), D(6;9; 5) . Tìm tọa độ trọng tâm G của tứ diện ABCD GV: LÊ XUÂN TOÀN – DĐ: 0975851198
- 18 14 A. G 9; ; 30 . B. G 8;12;4 . C. G 3;3; . D. G 2;3;1 . 4 4 Câu 38. Trong không gian Oxyz , cho hai điểm A(1;2;1), B(2; 1;2) . Điểm M trên trục Ox và cách đều hai điểm A, B có tọa độ là 1 1 3 1 3 1 3 A. M ; ; . B. M ;0;0 . C. M ;0;0 . D. M 0; ; . 2 2 2 2 2 2 2 Câu 39. Trong không gian Oxyz , cho hai điểm A(1;2;1), B(3; 1;2) . Điểm M trên trục Oz và cách đều hai điểm A, B có tọa độ là 3 3 1 3 A. M 0;0;4 . B. M 0;0; 4 . C. M 0;0; . D. M ; ; . 2 2 2 2 Câu 40. Trong không gian Oxyz cho ba điểm A( 1; 2;3), B(0;3;1),C(4;2;2) . Cosin của góc B· AC là 9 9 9 9 A. . B. . C. . D. . 2 35 35 2 35 35 Câu 41. Tọa độ của vecto n vuông góc với hai vecto a (2; 1;2),b (3; 2;1) là A. n 3;4;1 . B. n 3;4; 1 . C. n 3;4; 1 . D. n 3; 4; 1 . 2 Câu 42. Cho a 2; b 5, góc giữa hai vectơ a và b bằng , u ka b;v a 2b. Để u vuông góc với v thì 3 k bằng 6 45 6 45 A. B. . C. D. . . . 45 6 45 6 Câu 43. Cho u 2; 1;1 ,v m;3; 1 , w 1;2;1 . Với giá trị nào của m thì ba vectơ trên đồng phẳng 3 3 8 8 A. . B. . C. . D. . 8 8 3 3 Câu 44. Cho hai vectơ a 1;log3 5;m , b 3;log5 3;4 . Với giá trị nào của m thì a b A. m 1;m 1 . B. m 1 . C. m 1 . D. m 2;m 2 . Câu 45. Trong không gian Oxyz cho ba điểm A(2;5;3), B(3;7;4),C(x; y;6) . Giá trị của x, y để ba điểm A, B,C thẳng hàng là A. x 5; y 11 . B. x 5; y 11 . C. x 11; y 5 . D. x 11; y 5 . Câu 46. Trong không gian Oxyz cho ba điểm A(1;0;0), B(0;0;1),C(2;1;1) . Tam giác ABC là A. tam giác vuông tại A . B. tam giác cân tại A . C. tam giác vuông cân tại A .D. Tam giác đều. Câu 47. Trong không gian Oxyz cho tam giác ABC có A(1;0;0), B(0;0;1),C(2;1;1) . Tam giác ABC có diện tích bằng 6 6 1 A. 6 . B. . C. . D. . 3 2 2 Câu 48. Ba đỉnh của một hình bình hành có tọa độ là 1;1;1 , 2;3;4 , 7;7;5 . Diện tích của hình bình hành đó bằng 83 A. 2 83 . B. 83 . C. 83 . D. . 2 GV: LÊ XUÂN TOÀN – DĐ: 0975851198
- Câu 49. Cho 3 vecto a 1;2;1 ; b 1;1;2 và c x;3x; x 2 . Tìm x để 3 vectơ a,b,c đồng phẳng A.B2. C. 1. 2. D. 1. Câu 50. Trong không gian Oxyz cho ba vectơ a 3; 2;4 , b 5;1;6 , c 3;0;2 . Tìm vectơ x sao cho vectơ x đồng thời vuông góc với a,b,c A. 1;0;0 . B. 0;0;1 . C. 0;1;0 . D. 0;0;0 . Câu 51. Trong không gianOxyz , cho 2 điểm B(1;2; 3) ,C(7;4; 2) . Nếu E là điểm thỏa mãn đẳng thức CE 2EB thì tọa độ điểm E là 8 8 8 8 8 1 A. 3; ; . B. 3; ; . C. 3;3; . D. 1;2; . 3 3 3 3 3 3 Câu 52. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(1;2; 1) , B(2; 1;3) ,C( 2;3;3) . Điểm M a;b;c là đỉnh thứ tư của hình bình hành ABCM , khi đó P a2 b2 c2 có giá trị bằng A.43. . B. 44. . C. 42. . D. 45. Câu 53. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(1;2; 1) , B(2; 1;3) ,C( 2;3;3) . Tìm tọa độ điểm D là chân đường phân giác trong góc A của tam giác ABC A. D(0;1;3) . B. D(0;3;1) . C. D(0; 3;1) . D. D(0;3; 1) . Câu 54. Trong không gian với hệ toạ độ Oxyz , cho các điểm A( 1;3;5) , B( 4;3;2) , C(0;2;1) . Tìm tọa độ điểm I tâm đường tròn ngoại tiếp tam giác ABC 8 5 8 5 8 8 5 8 8 8 8 5 A. I( ; ; ) . B. I( ; ; ) . C. I( ; ; ). D. I( ; ; ) . 3 3 3 3 3 3 3 3 3 3 3 3 Câu 55. Trong không gian Oxyz , cho 3 vectơ a 1;1;0 , b 1;1;0 , c 1;1;1 . Cho hình hộp OABC.O A B C thỏa mãn điều kiện OA a, OB b, OC ' c . Thể tích của hình hộp nói trên bằng: 1 2 A. B. 4 C. D. 2 3 3 Câu 56. Trong không gian với hệ trục Oxyz cho tọa độ 4 điểm A 2; 1;1 , B 1;0;0 , C 3;1;0 , D 0;2;1 . Cho các mệnh đề sau: 1) Độ dài AB 2 . 2) Tam giác BCD vuông tại B . 3) Thể tích của tứ diện ABCD bằng 6 . Các mệnh đề đúng là: A. 2).B. 3). C. 1); 3). D. 2), 1) Câu 57. Trong không gianOxyz , cho ba vectơ a 1,1,0 ;b (1,1,0);c 1,1,1 . Trong các mệnh đề sau, mệnh đề nào đúng: 6 A. cos b,c . B. a b c 0. 3 A. a,b,c đồng phẳng.D. a.b 1. Câu 58. Trong không gian với hệ tọa độ Oxyz , cho tứ diện ABCD , biết A(1;0;1) ,B( 1;1;2) , C( 1;1;0) , D(2; 1; 2) . Độ dài đường cao AH của tứ diện ABCD bằng: GV: LÊ XUÂN TOÀN – DĐ: 0975851198
- 2 1 13 3 13 A. . B. . C. . D. . 13 13 2 13 Câu 59. Cho hình chóp tam giác S.ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là đẳng thức đúng 1 1 A. SI SA SB SC . B. SI SA SB SC . 2 3 C. SI SA SB SC. D. SI SA SB SC 0. Câu 60. Trong không gian Oxyz , cho tứ diện ABCD có A(1;0;0), B(0;1;0),C(0;0;1), D( 2;1; 1) . Thể tích của tứ diện ABCD bằng 3 1 A. . B. 3 . C. 1 . D. . 2 2 Câu 61. Cho hình chóp S.ABC có SA SB a, SC 3a, ·ASB C· SB 600 ,C· SA 900 . Gọi G là trọng tâm tam giác ABC . Khi đó khoảng cách SG bằng a 15 a 5 a 7 A. . B. . C. . D. a 3 . 3 3 3 Câu 62. Trong không gian tọa độ Oxyz cho ba điểm A 2;5;1 , B 2; 6;2 ,C 1;2; 1 và điểm M m;m;m , để MB 2AC đạt giá trị nhỏ nhất thì m bằng A. 2. B. 3 . C. 1. D. 4. Câu 63. Trong không gian tọa độ Oxyz cho ba điểm A 2;5;1 , B 2; 6;2 ,C 1;2; 1 và điểm M m;m;m , để MA2 MB2 MC 2 đạt giá trị lớn nhất thì m bằng A. 3. B. 4.C. 2.D. 1. Câu 64. Cho hình chóp S.ABCD biết A 2;2;6 , B 3;1;8 ,C 1;0;7 , D 1;2;3 . Gọi H là trung điểm của CD, 27 SH ABCD . Để khối chóp S.ABCD có thể tích bằng (đvtt) thì có hai điểm S , S thỏa mãn yêu 2 1 2 cầu bài toán. Tìm tọa độ trung điểm I của S1S2 A. I 0; 1; 3 . B. I 1;0;3 C.I 0;1;3 . D. I 1;0; 3 . Câu 65. Trong không gian Oxyz , cho hai điểm A(2; 1;7), B(4;5; 2) . Đường thẳng AB cắt mặt phẳng (Oyz) tại điểm M . Điểm M chia đoạn thẳng AB theo tỉ số nào 1 1 2 A. . B. . 2 C. . D. . 2 3 3 Câu 66. Trong không gian Oxyz , cho tứ diện ABCD có A(2;1; 1), B(3;0;1),C(2; 1;3) và D thuộc trục Oy . Biết VABCD 5 và có hai điểm D1 0; y1;0 , D2 0; y2 ;0 thỏa mãn yêu cầu bài toán. Khi đó y1 y2 bằng A. 0. B. .1 C. . 2 D. . 3 Câu 67. Trong không gian Oxyz , cho tam giác ABC có A( 1;2;4), B(3;0; 2),C(1;3;7) . Gọi D là chân đường phân giác trong của góc A . Tính độ dài OD . 207 203 201 205 A. . B. C. . D. . 3 3 3 3 GV: LÊ XUÂN TOÀN – DĐ: 0975851198
- Câu 68. Trong không gian với hệ toạ độ Oxyz , cho tam giác ABC , biết A(1;1;1) , B(5;1; 2) ,C(7;9;1) . Tính độ dài phân giác trong AD của góc A 2 74 3 74 A. . B. . C. 2 74. D. 3 74. 3 2 GV: LÊ XUÂN TOÀN – DĐ: 0975851198