Bộ đề thi tuyển sinh Lớp 10 THPT môn Toán các tỉnh - Năm học 2011-2012
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi tuyển sinh Lớp 10 THPT môn Toán các tỉnh - Năm học 2011-2012", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bo_de_thi_tuyen_sinh_lop_10_thpt_mon_toan_cac_tinh_nam_hoc_2.doc
Nội dung text: Bộ đề thi tuyển sinh Lớp 10 THPT môn Toán các tỉnh - Năm học 2011-2012
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH LỚP 10 THPT HÀ NAM NĂM HỌC 2011- 2012 x 6y 3 Bài 1. 1)Giải phương trình: x2 - 8x + 7 = 0 2)Giải hệ phương trình: x 3y 21 x -7 3 + x Bài 2 (1,5 điểm)Cho biểu thức: P = - với x > 0 và x 9 x -3 x x a) Rút gọn P. 1 2 b) Tính giá trị của biểu thức Q = P : tại x = x - 3 1 0 3 1 1 Bài 3: (1,5 điểm). Giải bài toán sau bằng cách lập phương trình Một nhà máy theo kế hoạch làm một công việc. Nếu hai dây chuyền sản xuất của nhà máy cùng làm chung thì hoàn thành công việc sau 12 giờ. Nếu làm riêng, để hoàn thành công việc thì dây chuyền sản xuất 1 làm lâu hơn dây chuyền sản xuất 2 là 7 giờ. Hỏi nếu làm riêng thì mỗi dây chuyền sản xuất làm xong công việc trong thời gian bao lâu. 6x2 y2 xy 6y 12x 0 Bài 4: (1,0 điểm) Cho x, y thoả mãn 2 4x xy 9 0 Tính giá trị của biểu thức A (8 7x 2y)2012 Bài 5 (4,0 điểm)Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AM và AN với đường tròn (M, N là tiếp điểm). Tia AO cắt đường tròn (O) tại B và C sao cho B nằm giữa A và O; gọi I là giao điểm của AO với MN. a)Chứng minh: ΔAMN cân và CM = CN b) Chứng minh: MA.MB = AB.CM. BA MA AB IB2 c)Chứng minh: = và = BI MI AC IM2 d)Đường tròn đường kính MI cắt đường tròn (O)tại điểm K khác M,chứng minh AK NK SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT PHÚ YÊN Thời gian làm bài : 120 phút, không kể thời gian giao đề Ngày thi : 27 tháng 6 năm 2011 1 1 Câu 1 (1.5 điểm) Rút gọn các biểu thức sau: A 3 2 2 3 2 2; B 3 1 3 1 Câu 2 (1.5 điểm) Giải các phương trình: a)2x2 + 5x – 3 = 0 b)x4 - 2x2 – 8 = 0 Câu 3 ( 1.5 điểm)Cho phương trình: x2 +(2m + 1)x – n + 3 = 0 (m, n là tham số) a) Xác định m, n để phương trình có hai nghiệm -3 và -2. b) Trong trường hợp m = 2, tìm số nguyên dương n bé nhất để phương trình đã cho có nghiệm dương. Câu 3 ( 2.0 điểm)Hưởng ứng phong trào thi đua”Xây dựng trường học thân thiện, học sinh tích cực”, Lóp 9A trường THCS Hoa Hồng dự định trồng 300 cây xanh. Đến ngày lao động, có 5 bạn được Liên Đội triệu tập tham gia chiến dịch an toàn giao thông nên mỗi bạn còn lại phải trồng thêm 2 cây mới đảm bảo kế hoạch đặt ra. Hỏi lớp 9A có bao nhiêu học sinh. 1
- Câu4 ( 3,5 điểm)Cho hai đường tròn (O) và (O’) có cùng bán kính R cắt nhau tại hai điểm A, B sao cho tâm O nằm trên đường tròn (O’) và tâm O’ nằm trên đường tròn (O). Đường nối tâm OO’ cắt AB tại H, cắt đường tròn (O’) tại giao điểm thứ hai là C. Gọi F là điểm đối xứng của B qua O’. a)Chứng minh rằng AC là tiếp tuyến của (O), và AC vuông góc BF. b)Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẽ đường thẳng vuông góc với OC cắt OC tại K, Cắt AF tại G. Gọi E là giao điểm của AC và BF. Chứng minh các tứ giác AHO’E, ADKO là các tứ giác nội tiếp. c)Tứ giác AHKG là hình gì? Vì sao. d)Tính diện tích phần chung của hình (O) và hình tròn (O’) theo bán kính R. UBND tinh b¾c ninh Đề thi tuyển sinh vào lớp 10 thpt Së gi¸o dôc vµ ®µo t¹o Năm học 2011 - 2012 Môn thi: Toán Ngày thi: 09 - 07 - 2011 §Ò chÝnh thøc Thời gian: 120 phút (Không kể thời gian giao đề) Bài 1(1,5 điểm) a)So sánh : 3 5 và 4 3 3 5 3 5 b)Rút gọn biểu thức: A 3 5 3 5 2x y 5m 1 Bài 2 (2,0 điểm)Cho hệ phương trình: ( m là tham số) x 2y 2 a)Giải hệ phương trình với m = 1 b)Tìm m để hệ có nghiệm (x;y) thỏa mãn : x2 – 2y2 = 1. Bài 3 (2,0 điểm) Gải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km.Khi đi từ B trở về A người đó tăng thêm vận tốc 4km/h so với lúc đi, vì vậy thời gian về ít hơn thời gian đi 30 phút.Tính vận tốc xe đạp khi đi từ A đến B . Bài 4 (3,5 điểm) Cho đường tròn (O;R), dây BC cố định (BC < 2R) và điểm A di động trên cung lớn BC sao cho ABC có ba góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau ở H. a)Chứng minh rằng tứ giác ADHE nội tiếp . b)Giả sử B·AC 600 , hãy tính khoảng cách từ tâm O đến cạnh BC theo R. c)Chứng minh rằng đường thẳng kẻ qua A và vuông góc với DE luôn đi qua một điểm cố định. d) Phân giác góc ·ABD cắt CE tại M, cắt AC tại P. Phân giác góc ·ACE cắt BD tại N, cắt AB tại Q. Tứ giác MNPQ là hình gì? Tại sao? Bài 5 (1,0 điểm) Cho biểu thức: P = xy(x 2)(y 6) 12x2 24x 3y2 18y 36. Chứng minh P luôn dương với mọi giá trị x;y R 2
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH BÀ RỊA – VŨNG TÀU Năm học 2011 – 2012 ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi 08 tháng 07 năm 2012 Thời gian làm bài : 120 phút ( không kể thời gian giao đề) Bài 1: ( 3,0 điểm) a) Rút gọn: A = ( 12 2 27 3) : 3 2x y 4 b) Giải phương trình : x2 - 4x + 3 =0 c) Giải hệ phương trình: x y 1 Bài 2: ( 1,5 điểm)Cho Parabol (P): y = x2 và đường thẳng (d) : y = 2x + a a) Vẽ Parabol (P) b) Tìm tất cả các giá trị của a để đường thẳng (d) và parabol (P) không có điểm chung Bài 3: ( 1,5 điểm): Hai ô tô cùng lúc khởi hành tứ thành phố A đến thành phố B cách nhau 100 km với vận tốc không đổi.Vận tốc ô tô thứ hai lớn hơn vận tốc ô tô thứ nhất 10km/h nên ô tô thứ hai đến B trước ô tô thứ nhất 30 phút.Tính vận tốc của mỗi ô tô trên. Bài 4: ( 3,5 điểm)Trên đường tròn (O,R) cho trước,vẽ dây cung AB cố định không di qua O.Điểm M bất kỳ trên tia BA sao cho M nằm ngoài đường tròn (O,R).từ M kẻ hai tiếp tuyến MC và MD với đường tròn (O,R) (C,D là hai tiếp điểm) a) Chứng minh tứ giác OCMD nội tiếp. b) Chứng minh MC2 = MA.MB c) Gọi H là trung diểm đoạn AB , F là giao điểm của CD và OH. Chứng minh F là điểm cố định khi M thay đổi Bài 5: ( 0,5 điểm)Cho a và b là hai số thỏa mãn đẳng thức: a2 + b2 + 3ab -8a - 8b - 23ab +19 = 0 .Lập phương trình bậc hai có hai nghiệm a và b SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 ĐĂK LĂK NĂM HỌC: 2011 – 2012 Câu 1. (2,0 điểm) 1)Giải các phương trình sau: a) 9x2 + 3x – 2 = 0 b) x4 + 7x2 – 18 = 0. 2)Với giá trị nào nào của m thì đồ thị của hai hàm số y = 12x + (7 – m) và y = 2x + (3 + m) cắt nhau tại một điểm trên trục tung? 2 1 Câu 2. (2,0 điểm) 1)Rút gọn biểu thức: A . 1 2 3 2 2 1 1 1 2 2)Cho biểu thức: B 1 . ; x 0, x 1 x x 1 x 1 x 1 a) Rút gọn biểu thức B. b)Tìm giá của của x để biểu thức B = 3. 2y x m 1 Câu 3.(1,5 điểm)Cho hệ phương trình: (1) 2x y m 2 1)Giải hệ phương trình (1) khi m =1. 2)Tìm giá trị của m để hệ phương trình (1) có nghiệm (x ; y) sao cho biểu thức P = x2 + y2 đạt giá trị nhỏ nhất. 3
- Câu 4.(3,5 điểm)Cho ABC có ba góc nhọn nội tiếp đường tròn (O). Hai đường cao BD và CE của ABC cắt nhau tại điểm H. Đường thẳng BD cắt đường tròn (O) tại điểm P; đường thẳng CE cắt đường tròn (O) tại điểm thứ hai Q. Chứng minh rằng: 1)BEDC là tứ giác nội tiếp. 2)HQ.HC = HP.HB 3)DE// PQ. 4)Đường thẳng OA là đường trung trực của đoạn thẳng PQ Câu 5. (1,0 điểm)Cho x, y, z là ba số thực tùy ý. Chứng minh: x2 + y2 + z2 – yz – 4x – 3y -7 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT KIÊN GIANG NĂM HỌC 2011 – 2012 (Đề thi có 01 trang) Thời gian: 120 phút (không kể thời gian giao đề) Ngày thi: 22/06/2011 Câu 1:(1,5đ)1)Tính: 12 75 48 b)Tính giá trị biểu thức A 10 3 11 3 11 10 Câu 2: (1,5 điềm)Cho hàm số y = (2 – m)x – m + 3 (1) a) Vẽ đồ thị (d) của hàm số khi m = 1 b) Tìm giá trị của m để đồ thị hàm số (1) đồng biến x 2y 5 Câu 3: (1 điềm)Giải hệ phương trình : 3x y 1 Câu 4: (2,5 điềm) 2 3 3 a) Phương trình x – x – 3 = 0 có 2 nghiệm x1, x2. Tính giá trị: X = x1 x2 + x2 x1 + 21 b) Một phòng họp dự định có 120 người dự họp, nhưng khi họp có 160 người tham dự nên phải kê thêm 2 dãy ghế phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy là bằng nhau. Câu 5: (1 điềm)Cho tam giác ABC vuông tại A, đường cao AH. Tính chu vi tam giác ABC biết: AC = 5cm. HC = 25 cm. 13 Câu 6: (2,5 điềm)Cho nửa đường tròn tâm O đường kính AB; Vẽ tiếp tuyến Ax, By với đường tròn tâm O. Lấy E trên nửa đường tròn, qua E vẽ tiếp tuyến với đường tròn cắt Ax tại D cắt By tại C. a) Chứng minh: OADE nội tiếp được đường tròn. b) Nối AC cắt BD tại F. Chứng minh: EF // AD. HẾT (Thí sinh được sử dụng máy tính theo quy chế hiện hành) 4
- VĨNH PHÚC PHẦN I: TRẮC NGHIỆM (2 điểm)Trong 4 câu: từ câu 1 đến câu 4, mỗi câu đều có 4 lựa chọn, trong đó chỉ có duy nhất một lựa chọn đúng. Em hãy viết vào tờ giấy làm bài thi chữ cái A, B, C hoặc D đứng trước lựa chọn mà em cho là đúng (Ví dụ: Nếu câu 1 em lựa chọn là A thì viết là 1.A) Câu 1. Giá trị của 12. 27 bằng: A. 12 B. 18 C. 27 D. 324 Câu 2. Đồ thị hàm số y= mx + 1 (x là biến, m là tham số) đi qua điểm N(1; 1) . Khi đó gí trị của m bằng: A. m = - 2 B. m = - 1 C. m = 0 D. m = 1 Câu 3. Cho tam giác ABC có diện tích bằng 100 cm2 . Gọi M, N, P tương ứng là trung điểm của AB, BC, CA. Khi đó diện tích tam giác MNP bằng: A. 25 cm2 B. 20 cm2 C. 30 cm2 D. 35 cm2 Câu 4. Tất cả các giá trị x để biểu thức x 1 có nghĩa là: A. x 1 D. x1 PHẦN II. TỰ LUẬN (8 điểm) x y 0 Câu 5. (2.0 điểm) Giải hệ phương trình 2 x 2y 1 0 Câu 6. (1.5 điểm) Cho phương trình x2 – 2mx + m2 – 1 =0 (x là ẩn, m là tham số). a)Giải phương trình với m = - 1 b)Tìm tất cả các giá trị của m đê phương trình (1) có hai nghiệm phân biệt c)Tìm tât cả các giá trị của m để phương trình (1) có hai nghiệm x1 , x2 sao cho tổng 2 2 P = x1 + x2 đạt giá trị nhỏ nhất. Câu 7. (1.5 điểm) Một hình chữ nhật ban đầu có cho vi bằng 2010 cm. Biết rằng nều tăng chiều dài của hình chữ nhật thêm 20 cm và tăng chiều rộng thêm 10 cm thì diện tích hình chữ nhật ban đầu tăng lên 13 300 cm2. Tính chiều dài, chiều rộng của hình chữ nhật ban đầu. Câu 8. (2.0 điểm Cho tam giác ABC có ba góc nhọn, không là tam giác cân,AB <BC<AC và nội tiếp đường tròn tâm O, đường kính BE. Các đường cao AD và BK của tam giác ABC cắt nhau tại điểm H. Đường thẳng BK cắt đường tròn (O) tại điểm thứ hai là F. Gọi I là trung điểm của cạnh AC. Chứng minh rằng: a) Tứ giác AFEC là hình thang cân. b) BH = 2.OI và điểm H đối xứng với F qua đường thẳng AC. Câu 9.(2.0 điểm) Cho a, b, c là ba số thực dương thỏa mãn điều kiện a + b + c = 1. Tìm giá ab bc ca trị lớn nhất của biểu thức: P = . c ab a bc b ca HẾT NINH BÌNH Câu 1 (2,0 điểm): 1. Rút gọn các biểu thức a b a) A 2 8 b) B + . a b - b a với a 0, b 0, a b ab-b ab-a 5
- 2x + y = 9 2. Giải hệ phương trình sau: x - y = 24 Câu 2 (3,0 điểm): 1. Cho phương trình x2 - 2mx- (m2 + 4) = 0 (1), trong đó m là tham số. a) Chứng minh với mọi m phương trình (1) luôn có 2 nghiệm phân biệt. 2 2 b) Gọi x1, x2 là hai nghiệm của phương trình (1). Tìm m để x1 + x2 20 . 2. Cho hàm số: y = mx + 1 (1), trong đó m là tham số. a) Tìm m để đồ thị hàm số (1) đi qua điểm A (1;4). Với giá trị m vừa tìm được, hàm số (1) đồng biến hay nghịch biến trên R? b) Tìm m để đồ thị hàm số (1) song song với đường thẳng (d) có phương trình: x + y + 3 = 0 Câu 3 (1,5 điểm):Một người đi xe đạp từ địa điểm A đến địa điểm B dài 30 km. Khi đi ngược trở lại từ B về A người đó tăng vận tốc thêm 3 (km/h) nên thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của người đi xe đạp lúc đi từ A đến B. Câu 4 (2,5 điểm):Cho (O,R).Từ điểm A bên ngoài đường tròn, kẻ 2 tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Từ B, kẻ đường thẳng song song với AC cắt đường tròn tại D (D khác B). Nối AD cắt đường tròn (O) tại điểm thứ hai là K. Nối BK cắt AC tại I. 1)Chứng minh tứ giác ABOC nội tiếp đường tròn. 2)Chứng minh rằng : IC2 = IK.IB. 3)ChoB·AC 600 chứng minh ba điểm A, O, D thẳng hàng. x, y, z 1:3 Câu 5 (1,0 điểm):Cho ba số x, y, z thỏa mãn . x + y + z 3 Chứng minh rằng: x2 + y2 + z2 11 BÌNH ĐỊNH 3x y 7 Bài 1 (2điểm) a)Giải hệ phương trình : 2x y 8 b)Cho hàm số y = ax + b.Tìm a và b biết rằng đồ thị của hàm số đã cho song song với đường thẳng y = -2x +3 và đi qua điểm M( 2;5) Bài 2: (2điểm) Cho phương trình x2 2(m 1)x m 4 0 (m là tham số) a)Giải phương trình khi m = -5 b)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m c)Tìm m sao cho phương trình đã cho có hai nghiệm x1, x2 thỏa mãn hệ thức 2 2 x1 x2 3x1x2 0 Bài 3 : (2điểm) Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và bình phương độ dài đường chéo gấp 5 lần chu vi.Tính diện tích hình chữ nhật Bài 4: (3điểm) Cho đường tròn tâm O, vẽ dây cung BC không đi qua tâm.Trên tia đối của tia BC lấy điểm M bất kì.Đường thẳng đi qua M cắt đường (O) lần lượt tại hai điểm N và P (N nằm giữa M và P) sao cho O năm bên trong góc PMC. Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP.Hai dây cung AB,AC cắt NP lần lượt tại D và E. a)Chứng minh tứ giác BDEC nội tiếp. b) Chứng minh : MB.MC = MN.MP c) Bán kính OA cắt NP tại K. Chứng minh: MK 2 MB.MC x2 2x 2011 Bài 5 (1điểm) Tìm giá trị nhỏ nhất của biểu thức: A (với x 0) x2 6
- Phú Thọ Câu 1 (2,5 điểm) a)Rút gọn A 2 9 3 36 : 4 b)Giải bất phương trình : 3x-2011<2012 2x 3y 1 c)Giải hệ phương trình : 5x 3y 13 Câu 2 (2,0 điểm) a)Giải phương trình : 2x2 -5x+2=0 b)Tìm các giá trị tham số m để phương trình x2 –(2m-3)x+m(m-3)=0 có 2 nghiệm phân biệt x1; x2 thỏa mãn điều kiện 2x1- x2=4 Câu 3 (1,5 điểm) Một người đi xe đạp từ A đến B với vận tốc không đổi.Khi đi từ B đến A người đó tăng vận tốc thêm 2 km/h so với lúc đi ,vì vậy thời gian về ít hơn thời gian đi 30 phút .tính vận tốc lúc đi từ A đến B ,biết quãng đường AB dài 30 km. Câu 4 (3,0 điểm)Cho đường tròn (O;R),M nằm ngoài (O) kẻ hai tiếp tuyến MA; MB với (O) ( A;B là tiếp điểm).Kẻ tia Mx nằm giữa MO và MA và cắt (O) tại C ;D.Gọi I là trung điểm CD,đường thẳng OI cắt đường thẳng AB tại N;Giải sử H là giao của AB và MO a)Chứng minh tứ giác MNIH nội tiếp đường tròn. b)Chứng minh rằng OIH đồng dạng với OMN , từ đó suy ra OI.ON=R2 c)Gỉa sử OM=2R ,chứng minh MAB đều. Câu 5 (1,0 điểm) Cho x, y là các số thực thỏa mãn điều kiện: x 1 y y y 1 x x Tìm giá trị nhỏ nhất của biểu thức S x 2 3xy 2y 2 8y 5 QUẢNG NAM 1 15 12 Bài 1 (2.0 điểm )Rút gọn :A = 2 5 3 45 500 B = 3 2 5 2 Bài 2 (2.5 điểm ) 3x y 1 1) Giải hệ phương trình : 3x 8y 19 2) Cho phương trình bậc hai : x2 – mx + m – 1 = 0 (1) a) Giải phương trình (1) khi m = 4 . 1 1 x1 x2 b) Tìm m để pt(1) có hai nghiệm x1 ; x2 thỏa mãn hệ thức : x1 x2 2011 Bài 3 (1.5 điểm )Cho hàm số y = 1 x2 4 1) Vẽ đồ thị ( P) của hàm số đó. 2) Xác định a và b để đường thẳng ( d) : y = ax + b cắt trục tung tại điểm có tung độ bằng - 2 và cắt đồ thị (P) nói trên tại điểm có hoành độ bằng 2. Bài 4 (4.0 điểm ) Cho nửa đường tròn tâm (O ;R) ,đường kính AB.Gọi C là điểm chính giữa của cung AB.Trên tia đối của tia CB lấy điểm D sao cho CD = CB. OD cắt AC tại M. Từ A , kẻ AH OD ( H OD). AH cắt DB tại N và cắt nửa đường tròn (O,R) tại E . 1) Chứng minh MCNH là tứ giác nội tiếp và OD song song với EB. 2) Gọi K là giao điểm của EC và OD.Chứng minh CKD CEB ,Suy ra C là trung điểm của KE. 3) Chứng minh EHK vuông cân và MN // AB. 4) Tính theo R diện tích hình tròn ngoại tiếp tứ giác MCNH (gợi ý :trọng tâm) 7
- THÁI BÌNH 3 1 x 3 Bài 1. (2,0 điểm) Cho biểu thức: A với x 0, x 1 . x 1 x 1 x 1 1)Rút gọn A. 2)Tính giá trị của A khi x = 3 2 2 . mx 2y 18 Bài 2. (2,0 điểm)Cho hệ phương trình : ( m là tham số ). x - y 6 1. Tìm m để hệ phương trình có nghiệm (x ;y) trong đó x = 2. 2. Tìm m để hệ phương trình có nghiệm duy nhất (x ;y) thoả mãn 2x + y = 9. Bài 3. (2,0 điểm)Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x 2 và đường thẳng (d): y = ax + 3 ( a là tham số ) 1)Vẽ parabol (P). 2)Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt. 3)Gọi x1; x2 là hoành độ giao điểm của (P) và (d), tìm a để x1 +2x2 = 3 Bài 4. (3,5 điểm)Cho đường tròn O, đường kính AB = 2R. Điểm C năm trên tia đối của tia BA sao cho BC = R. Điểm D thuộc đường tròn tâm O sao cho BD = R. Đường thẳng vuông góc với BC tại C cắt AD tại M. 1. Chứng minh rằng: a) Tứ giác BCMD là tứ giác nội tiếp. b) AB.AC = AD. AM. c) CD là tiếp tuyến của đường tròn tâm O. 2. Đường tròn tâm O chia ABM thành hai phần, tính diện tích phần ABM nằm ngoài đường tròn tâm O theo R. Bài 5. (0,5 điểm)Cho a, b, c là các số không âm thoả mãn a + b + c = 1006. (b c)2 (c a)2 (a b)2 Chứng minh rằng: 2012a 2012b 2012c 2012 2 . 2 2 2 HẾT 8
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT QUẢNG NINH NĂM HỌC 2011-2012 Bài 1. (2,0 điểm) 2 1 1 1. Rút gọn các biểu thức sau: a) A = 1 2 1 b)B = 5 3 2 3 2 3 2.Biết rằng đồ thị của hàm số y = ax - 4 đi qua điểm M(2;5). Tìm a Bài 2. (2,0 điểm) 1. Giải các phương trình sau: a) x2 3x 2 0 b) x4 2x2 0 2.Cho phương trình: x2 2(m 1)x 2m 2 0 với x là ẩn số. a)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m . b) Gọi hai nghiệm của phương trình là x1 , x2 , tính theo m giá trị của biểu thức 2 E = x1 2 m 1 x2 2m 2 Bài 3 .(2điểm)Giải bài toán sau bằng cách lập hệ phương trình:Nhà Mai có một mảnh vườn trồng rau bắp cải . Vườn được đánh thành nhiều luống mỗi luống cùng trồng một số cây bắp cải . Mai tính rằng : nếu tăng thêm 7 luống rau nhưng mỗi luống trồng ít đi 2 cây thì số cây toàn vườn ít đi 9 cây,nếu giảm đi 5 luống nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm 15 cây . Hỏi vườn nhà Mai trồng bao nhiêu cây bắp cải ? Bài 4 . (3,0 điểm) Cho đường tròn (O) đường kính AB và một điểm C cố định trên bán kính OA (C khác A và O) , điểm M di động trên đường tròn (M khác A,B) . Qua M kẻ đường thẳng vuông góc với CM , đường thẳng này cắt các tiếp tuyến tại A và B của đường tròn (O) lần lượt tại D và E . a) Chứng minh ACMD và BCME là các tứ giác nội tiếp . b) Chứng minh DC EC. c) Tìm vị trí của điểm M để diện tích tứ giác ADEB nhỏ nhất . Câu 5. (1,0 điểm) Tìm các bộ số thực (x, y, z) thoả mãn : 1 x 29 2 y 6 3 z 2011 1016 x y z 2 Hết AN GIANG Bài 1 (2,0 điểm) (không được dùng máy tính) 1)Thực hiện phép tính : 12 75 48 : 3 2)Trục căn thức ở mẫu : 1 5 15 5 3 1 Bài 2 (2,5 điểm) 1)Giải phương trình : 2x2 – 5x – 3 = 0 mx y = 3 2)Cho hệ phương trình ( m là tham số ) : x + 2my = 1 a)Giải hệ phương trình khi m = 1. b)Tìm giá trị của m để hệ pt có nghiệm duy nhất. 2 Bài 3 (2,0 điểm )Trên cùng một mặt phẳng tọa độ, cho parabol (P): y=x và đường thẳng 2 3 (d): y x 2 1)Bằng phép tính, hãy tìm tọa độ giao điểm của (P) và (d) . 2)Tìm m để đường thẳng (d’) :y= mx – m tiếp xúc với parabol (P) 9
- Bài 4 (3,5 điểm) Cho đường tròn (O;r) và hai đường kính AB,CD vuông góc với nhau.Trên cung nhỏ DB, lấy điểm N ( N khác B và D).Gọi M là giao điểm của CN và AB. 1)Chứng minh ODNM là tứ giác nội tiếp. 2)Chứng minh AN.MB =AC.MN. 3)Cho DN= r .Gọi E là giao điểm của AN và CD.Tính theo r độ dài các đoạn ED, EC . QUẢNG BÌNH Câu 1 ( 2 điểm) Cho Phương trình x2 - 2(n-1)x – 3 = 0 ( n tham số) a) Giải phương trình khi n = 2. b) Gọi x1: x2 là hai nghiệm của phường trình. Tìm n để x1 x2 4 x 1 Câu 2 ( 2 điểm) Cho biểu thức Q với x>0 và x 1 x 1 x x 1 a) Thu gọn Q b)Tìm các giá trị của x R sao cho x và Q có giá trị nguyên. 9 Câu 3 (1,5điểm) Cho ba đường thẳng (l1), ( l2), (l3) (l1) : y 2x 1 (l2 ) : y x (l3 ) : y mx 3 a) Tìm tọa độ giao điểm B của hai đường thẳng (l1) và ( l2). b) Tìm m để ba đường thẳng (l1), ( l2), (l3) đổng quy. 1 1 Câu 4 (1 điểm) cho x,y các số dương và 1 x y Chứng minh đẳng thức: x y x 1 y 1 Câu 5(3,5 điểm)Cho đường tròn (O), đường kính MN và dây cung PQ vuông góc với MN Tại I( khác M, N).trên cung nhỏ NP lấy điểm J (khác N, P). Nối M với J cắt PQ tại H. a)Chứng minh: MJ là phân giác của P·JQ . b)Chứng minh: tứ giác HINJ nội tiếp. c)Gọi giao điểm của PN với MJ là G; JQ với MN là K. Chứng minh GK// PQ. d)Chứng minh G là tâm đường tròn nội tiếp PKJ . UBND TỉNH THÁI NGUYÊN THI TUYỂN SINH LớP 10 THPT Sở GIáO DụC Và ĐàO TạO NĂM HọC 2011-2012 Môn thi: Toán HọC Đề chính thức Thời gian làm bài: 120 phút (không kể thời gian giao đề) 2 Bài 1:Rút gọn biểu thức A =5a2 (1 4a 4a2 ) , với a > o,5. 2a 1 Bài 2: Không dùng máy tính cầm tay,hãy giải phương trình : 29x2 -6x -11 = o 2011x 3 y 1 Bài 3 : Không dùng máy tính cầm tay,hãy giải hệ phương trình: 2011x 2011y 0 Bài 4:Cho hàm số bậc nhất y =f(x)= 2011x +2012. Cho x hai giá trị bất kì x1, x2 sao cho x1 < x2. a)Hãy chứng minh f(x1) < f(x2) b)Hàm số đồng biến hay nghịch biến trên R ? Bài 5 :Qua đồ thị của hàm số y = - 0,75x2,hãy cho biết khi x tăng từ -2 đến 4 thì giá trị nhỏ nhất và giá trị lớn nhất của y là bao nhiêu ? Bài 6: Hãy sắp xếp các tỷ số lượng giác sau theo thứ tự tăng dần ,giải thích ? Cos470, sin 780, Cos140, sin 470, Cos870 10
- Bài 7:Cho hình tam giác có góc bằng 450.Đường cao chia một cạnh kề với góc đó thành các phần 20cm và 21cm . Tính cạnh lớn trong hai cạnh còn lại . Bài 8: Cho đường tròn O bán kính OA và đường tròn đường kính OA. a)Xác định vị trí tương đối của hai đường tròn . b)Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C.Chứng minh nrằng AC = CD . Bài 9: Cho A,B,C, là ba điểm trên một đường tròn.At là tiếp tuyến của đường tròn tại A .đường thẳng song song với At cắt AB tại M và cắt AC tại N. Chứng minh rằng : AB.AM =AC.AN Bài 10: Dựng và nêu cách dựng tam giác ABC biết BC = 6cm,góc A bằng 600 và đường cao AH = 3cm Lạng Sơn Câu 1 (2 điểm): 2 a)Tính giá trị của các biểu thức: A = 25 9 ; B = 5 1 5 x y 2 xy 1 b)Rút gọn biểu thức: P = : Với x>0, y>0 và x y. x y x y Tính giá trị của biểu thức P tại x = 2012 và y = 2011. Câu 2(2điểm):Vẽ trên cùng một hệ trục tọa độ, đồ thị của các hàm số y = x2 và y = 3x – 2. Tính tọa độ các giao điểm của hai đồ thị trên. Câu 3 (2 điểm): a)Tính độ dài các cạnh của hình chữ nhật, biết chiều dài hơn chiều rộng 1 m và độ dài mỗi đường chéo của hình chữ nhật là 5 m. b)Tìm m để phương trình x - 2x + m = 0 có hai nghiệm phân biệt. Câu 4 (2 điểm)Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ các tiếp tuyến AB, AC với đường tròn (B,C là những tiếp điểm). a)Chứng minh ABOC là tứ giác nội tiếp. Nêu cách vẽ các tiếp tuyến AB, AC. b)BD là đường kính của đường tròn (O; R). Chứng minh: CD//AO. c)Cho AO = 2R, tính bán kính đường tròn nội tiếp tam giác ABC. Câu5(2điểm)Tìm số tự nhiên n biết:n+S(n) = 2011,trong đó S(n) là tổng các chữ số của n. SỞ GIÁO DỤC VÀ ĐÀO TẠO TÂY NINH Ngày thi: 02 tháng 7 năm 2011 Môn thi: Toán (không chuyên) x 1 1 2 A : (x 0;x 1) Câu 1: (1,5điểm)Cho biểu thức x 1 x x x 1 x 1 a) Rút gọn biểu thức A. b)Tìm các giá trị của x sao cho A<0. 2x y 2 Câu 2: (0,75điểm)Giải hệ phương trình sau: 1 2 x y 5 2 3 1 Câu 3: (1,75điểm)Vẽ đồ thị hàm số (P): y x2 . Tìm m để đường thẳng (d): y = x + m 4 tiếp xúc với đồ thị (P). Câu 4: (3.0điểm)Cho phương trình: x2 2(m 1)x m 4 0(1) (m là tham số) a) Giải phương trình (1) khi m = 4. 11
- b) Chứng tỏ rằng, với mọi giá trị của m phương trình (1) luôn có hai nghiệm phân biệt. c) Gọi x1, x2 là hai nghiệm của phương trình (1). Chứng minh rằng biểu thức B x1(1 x2 ) x2 (1 x1 ) không phụ thuộc vào m. Câu 5: (3.0điểm)Cho nửa đường tròn tâm O đường kính AB và điểm M bất kì trên nửa đường tròn đó (M khác A, B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ tiếp tuyến Ax. Tia BM cắt Ax tại I; tia phân giác của góc IAM cắt nửa đường tròn tại E và cắt tia BM tại F; BE cắt AM tại K. a) Chứng minh rằng: tứ giác EFMK là tứ giác nội tiếp. b) Chứng minh BAF là tam giác cân. c) Tia BE cắt tia Ax tại H. Tứ giác AHFK là hình gì? Bắc Giang Câu 1: (2,0 điểm) 1. Tính 3. 27 144 : 36 . 2. Tìm các giá trị của tham số m để hàm số bậc nhất y = (m - 2)x + 3 đồng biến trên R. Câu 2: (3,0 điểm) a 3 a a 1 1. Rút gọn biểu thức A 2 1 , với a 0; a 1. a 3 a 1 2x 3y 13 2. Giải hệ phương trình: . x 2y 4 3. Cho phương trình: x2 4x m 1 0 (1), với m là tham số. Tìm các giá trị của m để 2 phương trình (1) có hai nghiệm x1, x2 thoả mãn x1 x2 4 . Câu 3: (1,5 điểm)Một mảnh vườn hình chữ nhật có diện tích 192 m2. Biết hai lần chiều rộng lớn hơn chiều dài 8m. Tính kích thước của hình chữ nhật đó. Câu 4: (3 điểm)Cho nửa đường tròn (O), đường kính BC. Gọi D là điểm cố định thuộc đoạn thẳng OC (D khác O và C). Dựng đường thẳng d vuông góc với BC tại điểm D, cắt nửa đường tròn (O) tại điểm A. Trên cung AC lấy điểm M bất kỳ (M khác A và C), tia BM cắt đường thẳng d tại điểm K, tia CM cắt đường thẳng d tại điểm E. Đường thẳng BE cắt nửa đường tròn (O) tại điểm N (N khác B). 1. Chứng minh tứ giác CDNE nội tiếp. 2.Chứng minh ba điểm C, K và N thẳng hàng. 3. Gọi I là tâm đường tròn ngoại tiếp tam giác BKE. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm M thay đổi. Câu 5: (0,5 điểm)Cho hai số thực dương x, y thoả mãn: x3 y3 3xy x2 y2 4x2 y2 x y 4x3 y3 0 . Tìm giá trị nhỏ nhất của biểu thức M = x + y. Hết 12
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT BÌNH THUẬN NĂM HỌC 2011 – 2012Môn thi : TOÁN Bài 1:( 2 điểm) Cho hàm số y = -x – 2 có đồ thị là đường thẳng (d ) 1) Trong mặt phẳng tọa độ Oxy hãy vẽ đường thẳng ( d ) 2) Hàm số y = 2mx + n có đồ thị là đường thẳng ( d’ ). Tìm m và n đề hai đường thẳng (d) và ( d’ ) song song với nhau. Bài 2 : (2 điểm)Giải phương trình và hệ phương trình sau: x - 2y 4 1) 3x2 + 4x + 1 = 0 2) 2x 3y 1 Bài 3 : (2 điểm)Rút gọn các biểu thức sau: 15 12 6 2 6 1) A = ( 32 3 18) : 2 2) B = 5 2 3 2 Bài 4 : (4 điểm)Cho đường tròn (O; R) và điểm A sao cho OA = 2R. Từ A vẽ hai tiếp tuyến AB, AC đến (O) ( với B,C là các tiếp điểm). 1) Tính góc AOB. 2) Từ A vẽ các tuyến APQ đến đường tròn (O) ( Cát tuyến APQ không đi qua tâm O . Gọi H là trung điểm của PQ ; BC cắt PQ tại K . a) Chứng minh 4 điểm O, H , B, A cùng thuộc một đường tròn. b) Chứng minh AP. AQ = 3R2. c) Cho OH = R , tính độ dài đoạn thẳng HK theo R 2 SỞ GIÁO DỤC ĐÀO TẠO Khóa ngày: 26 – 6 – 2011 NINH THUẬN Môn thi: TOÁNThời gian làm bài: 120 phút Bài 1: (2,0 điểm)Cho đường thẳng (d): y = -x + 2 và parabol (P): y = x2 a) Vẽ (d) và (P) trên cùng một hệ trục tọa độ. b) Bằng đồ thị hãy xác định tọa độ các giao điểm của (d) và (P). Bài 2: (2,0 điểm) 3 x 2 y 1 a)Giải phương trình: 3x2 – 4x – 2 = 0. b)Giải hệ phương trình: 2 x y 4 x x 8 Bài 3: (2,0 điểm) Cho biểu thức: P = 3(1 x) , với x 0 x 2 x 4 a)Rút gọn biểu thức P. b)Tìm các giá trị nguyên dương của x để biểu thức Q = 2P nhận giá trị nguyên. 1 P Bài 4: (3,0 điểm)Cho ABC có B·AC = 600, đường phân giác trong của góc ABC là BD và đường phân giác trong của góc ACB là CE cắt nhau tại I (D AC và E AB) a)Chứng minh tứ giác AEID nội tiếp được trong một đường tròn. b)Chứng minh rằng: ID = IE c)Chứng minh rằng: BA.BE = BD. BI Bài 5: (1,0 điểm) Cho hình vuông ABCD. Qua điểm A vẽ một đường thẳng cắt cạnh BC 1 1 1 tại E và cắt đường thẳng CD tại F. Chứng minh rằng: A2 A 2 AF 2 13
- SỞ GD&ĐT THÀNH PHỐ HÀ NỘI ĐỀ THI TUYỂN SINH VÀO LỚP 10 Môn thi : Toán ĐỀ CHÍNH THỨC Ngày thi : 22 tháng 6 năm 2011 Thời gian làm bài: 120 phút x 10 x 5 Bài I (2,5 điểm)Cho A Với x 0,x 25 . x 5 x 25 x 5 1 1) Rút gọn biểu thức A. 2) Tính giá trị của A khi x = 9 3) Tìm x để A . 3 Bài II (2,5 điểm)Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe theo kế hoạch chở hết 140 tấn hàng trong một số ngày quy định. Do mỗi ngày đội đó chở vượt mức 5 tấn nên đội đã hoàn thành kế hoạch sớm hơn thời gian quy định 1 ngày và chở thêm được 10 tấn. Hỏi theo kế hoạch đội xe chở hàng hết bao nhiêu ngày? Bài III (1,0 điểm)Cho Parabol (P): y x2 và đường thẳng (d): y 2x m2 9 . 1) Tìm toạ độ các giao điểm của Parabol (P) và đường thẳng (d) khi m = 1. 2) Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm nằm về hai phía của trục tung. Bài IV (3,5 điểm)Cho đường tròn tâm O, đường kính AB = 2R. Gọi d1 và d2 là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B.Gọi I là trung điểm của OA và E là điểm thuộc đường tròn (O) (E không trùng với A và B). Đường thẳng d đi qua điểm E và vuông góc với EI cắt hai đường thẳng d1 và d2 lần lượt tại M, N. 1) Chứng minh AMEI là tứ giác nội tiếp. 2) Chứng minh ENI EBI và MIN 900 . 3) Chứng minh AM.BN = AI.BI . 4) Gọi F là điểm chính giữa của cung AB không chứa E của đường tròn (O). Hãy tính diện tích của tam giác MIN theo R khi ba điểm E, I, F thẳng hàng. 1 Bài V (0,5 điểm)Với x > 0, tìm giá trị nhỏ nhất của biểu thức: M 4x2 3x 2011 . 4x 14
- HƯNG YÊN Phần A. Trắc nghiệm khách quan (2đ)Từ câu 1 đến câu 8, hãy chọn phương án đúng và viết chữ cái đứng trước phương án đó vào bài làm. Câu 1: Giá trị của biểu thức 18a (với a 0) bằng: A. 9B.a 3a C. 2D. 3 3a 2a Câu 2: Biểu thức 2x 2 x 3 có nghĩa khi và chỉ khi: A. x 3 B. x 1 C. x 1 D. x 1 Câu 3: Điểm M(- 1; 2) thuộc đồ thị hàm số y = ax2 khi a bằng: A. 2B. 4 C. - 2D. 0,5 Câu 4: Gọi S, P là tổng và tích các nghiệm của phương trình x2 8x 7 0 .Khi đó S + P bằng: A. - 1B. - 15C. 1D. 15 Câu 5: Phương trình x2 – (a + 1)x + a = 0 có nghiệm là: A. x1 1;x2 a B. C.x1 D. 1;x2 a x1 1;x2 a x1 1;x2 a Câu 6: Cho đường tròn (O; R) và đường thẳng (d). Biết rằng (d) và đường tròn (O; R) không giao nhau, khoảng cách từ O đến (d) bằng 5. Khi đó: A. R 5D. R 5 Câu 7: ABC vuông tại A, AC = 3cm, AB = 4cm. Khi đó sinB bằng: 3 3 4 4 A. B. C. D. 4 5 5 3 Câu 8: Một hình nón có chiều cao h và đường kính đáy d . Thể tích của hình nón đó là: 1 1 1 1 A. B. d2h C. D.d2 h d2h d2h 3 4 6 12 Phần B: Tự luận (8đ) Bài 1: (1,5đ):a) Rút gọn biểu thức: P = (4 2 8 2). 2 8 b) Tìm toạ độ giao điểm của hai đồ thị hàm số y x2 và y 3x 2 Bài 2: (1đ): Một công ty vận tải điều một số xe tải đến kho hàng để chở 21 tấn hàng. Khi đến kho hàng thì có 1 xe bị hỏng nên để chở hết lượng hàng đó, mỗi xe phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi lúc đầu công ty đã điều đến kho hàng bao nhiêu xe. Biết rằng khối lượng hàng chở ở mỗi xe là như nhau. (m 1)x my 3m 1 Bài 3: (1,5đ): Cho hệ phương trình: 2x y m 5 a) Giải hệ pt với m = 2 b)Tìm m để hpt có nghiệm duy nhất (x;y) sao cho x2 y2 4 Bài 4: (3đ) Cho (O,R) và một đường thẳng (d) cố định, (d) và đường tròn (O; R) không giao nhau. Gọi H là chân đường vuông góc kẻ từ O đến đường thẳng (d), M là một điểm thay đổi trên (d) (M không trùng với H). Từ M kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Dây cung AB cắt OH tại I. a) Chứng minh 5 điểm O, A, B, H, M cùng nằm trên một đường tròn. b) Chứng minh IH.IO = IA.IB c)CM: khi M thay đổi trên (d) thì tích IA.IB không đổi. Bài 5: (1đ): Tìm giá trị lớn nhất của biểu thức yvới –4 1( x<2 x <x 1. 1) 3 2x 1 15
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THÀNH PHỐ ĐÀ NẴNG Khóa ngày 21 tháng 6 năm 2011 ĐỀ CHÍNH THỨC MÔN THI: TOÁN Thời gian :120 phút (không tính thời gian giao đề) Bài 1: (2,0điểm) a) Giải phương trình (2x + 1)(3 – x) + 4 = 0 3x y 1 b) Giải hệ phương trình : 5x 3y 11 6 3 5 5 2 Bài 2: (1 đ) Rút gọn biểu thức Q = : 2 1 5 1 5 3 Bài 3: (2đ) Cho phương trình x2 – 2x – 2m2 = 0 ( m là tham số ) a)Giải phương trình khi m = 0 2 2 b)Tìm m để phương trình có hai nghiệm x1;x2 khác 0 và thỏa điều kiện x1 =4x2 Bài 4: (1,5đ) Một hình chữ nhật có chu vi bằng 28 cm và mỗi đường chéo của nó có độ dài 10cm . Tìm độ dài các cạnh của hình chữ nhật đó. Bài 5: (3,5đ) Cho tam giác đều ABC nội tiếp đường tròn đường kính AD . Gọi M là một điểm di động trên cung nhỏ AB ( M không trùng với các điểm A và B) a)Chứng minh rằng MD là đường phân giác của góc BMC b)Cho AD = 2R . Tính diện tích tứ giác ABDC theo R c)Gọi K là giao điểm của AB và MD , H là giao điểm của AD và MC Chứng minh rằng ba đường thẳng AM,BD,HK đồng quy. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.HCM Năm học: 2011 – 2012 ĐỀ CHÍNH THỨC MÔN: TOÁN Thời gian làm bài: 120 phút Bài 1: (2 điểm)Giải các phương trình và hệ phương trình sau: 2 5x 7y 3 4 2 2 a)3x 2x 1 0 b) c) x 5x 36 0 d)3x 5x 3 3 0 5x 4y 8 Bài 2: (1,5 điểm) a) Vẽ đồ thị (P) của hàm số y x2 và đường thẳng (D): y 2x 3 trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính. Bài 3: (1,5 điểm)Thu gọn các biểu thức sau: 3 3 4 3 4 x x 2x 28 x 4 x 8 A B (x 0, x 16) 2 3 1 5 2 3 x 3 x 4 x 1 4 x Bài 4: (1,5 điểm)Cho phương trình x2 2mx 4m2 5 0 (x là ẩn số) a)Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m. 2 2 b)Gọi x1, x2 là các nghiệm của phương trình. Tìm m để biểu thức A = x1x2 x1 x2 . đạt giá trị lớn nhất 16
- Bài 5: (3,5 điểm)Cho đường tròn (O) có tâm O, đường kính BC. Lấy một điểm A trên đường tròn (O) sao cho AB > AC. Từ A, vẽ AH vuông góc với BC (H thuộc BC). Từ H, vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB, F thuộc AC). a)Chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF. b)Đường thẳng EF cắt đường tròn (O) tại P và Q (E nằm giữa P và F). Chứng minh AP2 = AE.AB. Suy ra APH là tam giác cân c)Gọi D là giao điểm của PQ và BC; K là giao điểm cùa AD và đường tròn (O) (K khác A). Chứng minh AEFK là một tứ giác nội tiếp. d)Gọi I là giao điểm của KF và BC. Chứng minh IH2 = IC.ID SỞ GIÁO DỤC VÀ ĐÀOTẠO KỲ THI TUYỂN SINH VÀO LỚP 1 THPT NGHỆ AN NĂM HỌC 2011 – 2012 1 1 x 1 : Câu 1: (3,0 điểm)Cho biểu thức A = 2 x x x 1 x 1 a)Nêu điều kiện xác định và rút biểu thức A b)Tìm giá trị của x để A = 1 . 3 c)Tìm giá trị lớn nhất của biểu thức P = A - 9 x Câu 2: (2,0 điểm)Cho phương trình bậc hai x2 – 2(m + 2)x + m2 + 7 = 0 (1) (m là tham số) a) Giải phương trình (1) khi m = 1. b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn x1x2 – 2(x1 + x2) = 4 Câu 3: (1,5 điểm)Quãng đường AB dài 120 km. Hai xe máy khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe máy thứ nhất lớn hơn vận tốc của xe máy thứ hai là 10 km/h nên xe máy thứ nhất đến B trước xe máy thứ hai 1 giờ. Tính vận tốc của mỗi xe ? Câu 4: (3,5 điểm)Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE tới đường tròn (B, C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC. a)Chứng minh rằng ABOC là tứ giác nội tiếp b)CMR: AH.AO = AD.AE c)Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB tại P và cắt tia AC tại Q. Chứng minh rằng IP + KQ PQ. Hết SỞ GIÁO DỤC VÀ ĐÀO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT TẠO KHÁNH HÒA Ngày thi : 21/06/2011 Bài 1( 2 điểm) 2 3 6 8 4 1) Đơn giản biểu thức: A 2 3 4 1 1 P a ( );(a 1) 2) Cho biểu thức: a a 1 a a 1 Rút gọn P và chứng tỏ P 0 17
- Bài 2( 2 điểm) 2 1) Cho phương trình bậc hai x + 5x + 3 = 0 có hai nghiệm x1; x2. Hãy lập một phương 2 2 trình bậc hai có hai nghiệm (x1 + 1 ) và ( x2 + 1). 2 3 4 x y 2 2) Giải hệ phương trình 4 1 1 x y 2 Bài 3( 2 điểm)Quãng đường từ A đến B dài 50km.Một người dự định đi xe đạp từ A đến B với vận tốc không đổi.Khi đi được 2 giờ,người ấy dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định,người đó phải tăng vận tốc thêm 2 km/h trên quãng đường còn lại.Tính vận tốc ban đầu của người đi xe đạp. Bài 4( 4 điểm)Cho ABC có ba góc nhọn và H là trực tâm.Vẽ hình bình hành BHCD.Đường thẳng đi qua D và song song BC cắt đường thẳng AH tại E. 1) Chứng minh A,B,C,D,E cùng thuộc một đường tròn 2) Chứng minh BAE DAC 3) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm của BC,đường thẳng AM cắt OH tại G.Chứng minh G là trọng tâm của tam giácABC. 4) Giả sử OD = a.Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT QUẢNG TRỊ Khóa ngày 27 tháng 6 năm 2011 Câu 1 (2,0 điểm) Rút gọn các biểu thức (không sử dụng máy tính cầm tay): a) M 27 5 12 2 3 ; 1 1 a b) N : , với a > 0 và a 4 . a 2 a 2 a 4 Câu 2 (1,5 điểm) Giải các phương trình (không sử dụng máy tính cầm tay): x 1 1 a) x2 5x 4 0 b) . x 3 2 Câu 3 (1,0 điểm) a) Vẽ đồ thị (d) của hàm số y = -x + 3; b) Tìm trên (d) điểm có hoành độ và tung độ bằng nhau. 2 Câu 4 (1,0 điểm)Gọi x1, x2 là hai nghiệm của phương trình x + 3x -5 = 0. Tính giá trị của 2 2 biểu thức x1 x2 . Câu 5 (1,5 điểm) Giải bài toán bằng cách lập hệ phương trình:Tính chu vi của một hình chữ nhật, biết rằng nếu tăng mỗi chiều của hình chữ nhật thêm 4m thì diện tích của hình chữ nhật tăng thêm 80m2 ; nếu giảm chiều rộng 2m và tăng chiều dài 5m thì diện tích hình chữ nhật bằng diện tích ban đầu. Câu 6 (3,0 điểm) Cho tứ giác ABCD nội tiếp nữa đường tròn (O) đường kính AD. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD (F AD; F O). a) Chứng minh: Tứ giác ABEF nội tiếp được; b) Chứng minh: Tia CA là tia phân giác của góc BCF; c) Gọi M là trung điểm của DE. Chứng minh: CM.DB = DF.DO. HẾT 18
- SỞ GD&ĐT KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC HÒA BÌNH 2010-2011ĐỀ THI MÔN TOÁNLỚP CHẤT LƯỢNG CAO TRƯỜNG PT DTNT TỈNH Đề chính thức Ngày thi : 21 tháng 7 năm 2010 Thời gian làm bài 150 phút (không kể thời gian giao đề ) 2 2 x - 6 Câu 1 (2 điểm) Cho biểu thức : A = 1- + : 2 x - 2 x + 2 x - 2 a)Tìm x để biểu thức A có nghĩa b)Rút gọn biểu thức A. Câu 2 (2 điểm) Cho phương trình :x2-mx-x-m-3=0 (1) (m là tham số). a)CMR:phương trình (1) luôn có hai nghiệm phân biệt x1;x2 với mọi giá trị của m ; 2 2 b) Tìm giá trị của m để biểu thứcP = x1 + x2 - x1x2 + 3x1+ 3x2 đạt giá trị nhỏ nhất. Câu 3 (2 điểm) Một canô đi xuôi dòng sông từ bến A đến bến B hết 6 giờ, đi ngược dòng sông từ bến B về bến A hết 8 giờ. (Vận tốc dòng nước không thay đổi) a) Hỏi vận tốc của canô khi nước yên lặng gấp mấy lần vận tốc dòng nước chảy ? b) Nếu thả trôi một bè nứa từ bến A đến bến B thì hết bao nhiêu thời gian ? Câu 4 (3 điểm) 1. Cho tam giác ABC vuông tại A và AB = 10cm. Gọi H là chân đường cao kẻ từ A xuống BC. Biết rằng HB = 6cm, tính độ dài cạnh huyền BC. 2. Cho tam giác ABC nội tiếp đường tròn (O), H là trực tâm của tam giác, AH cắt đường tròn (O) tại D (D khác A). Chứng minh rằng tam giác HBD cân. 3. Hãy nêu cách vẽ hình vuông ABCD khi biết tâm I của hình vuông và các điểm M, N lần lượt thuộc các đường thẳng AB, CD. (Ba điểm M, I, N không thẳng hàng). x2 y2 - xy - 2 = 0 Câu 5 (1 điểm) Giải hệ phương trình : 2 2 2 2 x + y = x y Hết Họ và tên thí sinh : Số báo danh : Phòng thi : . 19
- Sở GD ĐT Hà Tĩnh Đề thi TS vào lớp 10 Năm học 2011 - 2012 Môn: Toán Thời gian: 120 phút Câu 1: 2 đ a) Tìm m để đường thẳng y = (2m – 1)x + 3 song song với đường thẳng y = 3x -1. x 2y 4 b) Giải hệ pt: 2x 3y 1 1 1 2 Câu 2: 1,5 đ Cho biểu thức: P = 1 với a> 0 , a 4 2 a 2 a a 1 a) Rút gọn P b) Tìm a để P > 2 Câu 3: (2 đ) a) Tìm tọa độ giao điểm của y = x2 và y = -x + 2. 2 b) Xác định m để pt: x - x + 1 - m = 0 có hai nghiệm x1,2 thỏa mãn 4( 1 1 ) x1 x2 3 0 . x1 x2 Câu 4: (3,5 đ) Trên nửa đường tròn đường kính BC, lấy hai điểm M, N sao cho M thuộc cung BN. Gọi A là giao điểm của BM và CN. H là giao điểm của BN và CM. a) CMR: tứ giác AMHN nội tiếp. b) CM : ABN ∽ HCN. c) Tính giá trị của S = BM.BA + CN.CA theo BC 9 a b c Câu 5: ( 1 đ) Cho a, b, c > . Tìm GTNN của Q = 4 2 b 3 2 c 3 2 a 3 Kỳ thi tuyển sinh Đồng Nai 2011 – 2012 Câu I: x 3y 7 1) Giải PT 2x2 – 3x – 2 = 0 2)Giải HPT 2x 3y 0 3) Đơn giản biểu thức P 5 80 125 4) Cho biết a b a 1 b 1 (a 1;b 1) . Chứng minh a + b = ab Lưu ý: các câu 1/, 2/ 3/ không sử dụng máy tính. Câu II:Cho Parapol y = x2 (P) và đường thẳng : y = 2(1 – m)x + 3 (d) với m là tham số. 1) Vẽ đồ thị (P). 2) Chứng minh với mọi giá trị của m, parapol (P) và đường thẳng (d) luôn cắt nhau tại hai điểm phân biệt 3) Tìm các giá trị của m, để (P) và (d) cắt nhau tại điểm có tung độ y = 1 Câu III: Cho (O), dường kính AB = 2R, C là một điểm trên đường tròn ( khác A, B). Gọi M là trung điểm của cung nhỏ BC 1) Chứng minh AM là tia phân giác của góc BAC 2) Cho biết AC = R. Tính BC, MB 3) Giả sử BC cắt AM ở N. Chứng minh MN. MA = MC2 Câu IV: Chứng minh P= x4 – 2x3 + 2x2 – 2x + 1 0 , với mọi giá trị của x. 20
- SỞ GIÁO DỤC VÀ ĐÀO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT TẠO KHÁNH HÒA Khóa ngày : 29/06/2011 Bài 1: ( Không dùng máy tính cầm tay) 1 1. Tính giá trị biểu thức: A 3 2 3 2x y 5 2. Giải hệ phương trình: 3. Giải phương trình: x4 – 5x2 – 36 = 0 3x y 10 1 Bài 2: : Cho parapol (P) : y = x2 . 2 1. Vẽ (P) trong mặt phẳng tọa độ Oxy. 2. Bằng phương pháp đại số,hãy tìm tọa độ các giao điểm A và B của (P) và đường thẳng (d) : y = - x + 4.Tính diện tích tam giác AOB ( O là gốc tọa độ). Bài 3 : Cho phương trình bậc hai x2 - ( m + 1 )x + 3 ( m – 2 ) = 0 ( m là tham số).Tìm tất 3 3 cả các giá trị của m để phương trình có hai nghiệm x1;x2 thỏa mãn điều kiện x1 + x2 35. Bài 4 : Cho nửa đường tròn tâm O đường kính AB = 2R( kí hiệu là (O) ).Qua trung điểm I của AO, vẽ tia Ix AB và cắt (O) tại K.Gọi M là điểm di động trên đoạn IK(M khác I và K ), kéo dài AM cắt (O) tại C.Tia Ix cắt BC tại D và cắt tiếp tuyến tại C của (O) tại E. 1)Chứng minh tứ giác IBCM nội tiếp. 2)Chứng minh CEM cân tại E. 3)Khi M là trung điểm của IK,tính SABD theo R. 4)Chứng tỏ rằng tâm đường tròn ngoại tiếp tam giác AMD thuộc một đường thẳng cố định khi M thay đổi. SỞ GD & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT THANH HOÁ Ngày thi 30 tháng 6 năm 2011 Bài 1(1.5đ): 1)Cho hai số a1 = 1+2 ; a2 = 1-2 . Tính a1+a2. x 2y 1 2)Giải hệ phương trình: 2x y 3 a a 4 a 1 1 Bài 2(2đ): Cho biểu thức A = : (Với a 0;a 4 ) a 2 a 2 a 4 a 2 1)Rút gọn biểu thức A. 2)Tính giá trị của A tại a = 6+4 2 Bài 3(2,5đ): Cho phương trình: x2 – (2m-1)x + m(m-1) = 0 (1). (Với m là tham số) a. Giải phương trình (1) với m = 2. b. Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m. c. Gọi x1 và x2 là hai nghiệm của phương trình (1). (Với x1 < x2). 2 Chứng minh rằng x1 – 2x2 + 3 0. Bài 4(3đ): Cho ABC có ba góc nhọn. Đường cao BD và CK cắt nhau tại H. 1. Chứng minh tứ giác AKHD nội tiếp được trong một đường tròn 2. Chứng minh AKD và ACD đồng dạng. 3. kẻ tiếp tuyến Dx tại D của đường tròn tâm O đường kính BC cắt AH tại M. Chứng minh M là trung điểm của AH a b c Bài 5(1đ): Cho ba số dương a, b, c. Chứng minh : 2 b c a c a b 21
- SỞ GIÁO DỤC VÀ ĐÀO TẠOKÌ THI TUYỂN SINH LỚP 10 NĂM HỌC 2011-2012 QUẢNG NGÃI MÔN : TOÁN Bài 1: (1.5 điểm) 1) Thực hiện phép tính: 29 + 3 16 x y 4023 2) Giải phương trình và hệ phương trình sau: a) x2 – 20x + 96 = 0 b) x y 1 Bài 2: (2.5điểm) 1) Cho hàm số y = x2 có đồ thị là (P) và đường thẳng (d): y = x + 2 a) Vẽ ( P ) và ( d ) trên cùng một hệ toạ độ Oxy b) Bằng phép tính hãy tìm toạ độ giao điểm của ( P ) và ( d ) 2) Trong cùng một hệ toạ độ Oxy cho 3 điểm: A(2;4);B(-3;-1) và C(-2;1) . Chứng minh 3 điểm A, B, C không thẳng hàng. x 2x x 3) Rút gọn biểu thức: M = + với x> 0 và x 1 x 1 x x Bài 3: (1.5điểm) Hai bến sông cách nhau 15 km. Thơì gian một ca nô xuôi dòng từ bến A đến bến B, tại bến B nghỉ 20 phút rồi ngược dòng từ bến B trở về bến A tổng cộng là 3 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết vận tốc của dòng nước là 3 km/h. Bài 4: (3.5 điểm) Cho nửa đường tròn tâm O đường kính AB. Một điểm C cố định thuộc đoạn thẳng AO ( C khác A và C khác O ). Đường thẳng đi qua điểm C và vuông góc với AO cắt nửa đường tròn đã cho tại D. Trên cung BD lấy điểm M ( với M khác B và M khác D). Tiếp tuyến của nửa đường tròn đã cho tại M cắt đường thẳng CD tại E. Gọi F là giao điểm của AM và CD. 1. Chứng minh : BCFM là tứ giác nội tiếp đường tròn. 2. Chứng minh EM = EF 3. Gọi I là tâm đường tròn ngoại tiếp tam giác FDM. Chứng minh D, I, B thẳng hàng; từ đó suy ra góc ABI có số đo không đổi khi M thay đổi trên cung BD. 2 Bài 5:(1.0 điểm) Cho phương trình ( ẩn x ) : x – (2m + 3)x + m = 0. Gọi x1 và x2 là hai 2 2 nghiệm của phương trình đã cho. Tìm giá trị của m để biểu thức x1 + x2 có giá trị nhỏ nhất. HẾT 22
- SỞ GD&ĐT BÌNH DƯƠNG ĐỀ TUYỂN SINH VÀO LỚP 10 THPT Bài 1: (1đ)Tính M 15x2 8x 15 16 , tại x= 15 Bài 2 (2đ)1)Vẽ đồ thị hàm số sau trên cùng 1 mặt phẳng toạ độ :y = 2x–4(d);y = -x + 5 (d’) Và tìm toạ độ giao điểm A của (d) và (d’) bằng cách giải hệ phương trình. 2)Tìm m để (P): y = mx2 đi qua điểm có toạ độ (3;2) Bài 3(2đ)Giải phương trình : a)x2 + 7x + 10 = 0 b) x4 - 13x2 + 36 = 0 Bài 4(2đ)1)Tính chiều dài và chiều rộng của một hình chữ nhật có nửa chu vi là 33m và diện tích là 252m2 . 2)Cho phương trình : x2 – 2(m + 2)x + 2m + 3 = 0 (1).Tìm tất cả giá trị m để phương trình (1) có 2 nghiệm phân biệt đều lớn hơn 0,5 . Bài 5 (3đ)Cho đường tròn (O). Từ 1 điểm A ngoài (O) vẽ 2 tiếp tuyến AB, AC với (O) (B,C là 2 tiếp điểm). Vẽ đường thẳng (d) qua C và vuông góc với AB, (d) cắt đường thẳng AB tại H. cắt (O) tại E, C và cắt đường thẳng OA tại D. a)Chứng minh: CH // OB và OCD cân . b)Chứng minh : tứ giác OBDC là hình thoi . c)M là trung điểm của EC, tiếp tuyến của (O) tại E cắt AC tại K. CMR:O,M,K thẳng hàng SỞ GIÁO DỤC – ĐÀO ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM 2011 TẠO NAM ĐỊNH Môn: TOÁN PHẦN 1 – Trắc nghiệm (2điểm): Câu 1: Rút gọn biểu thức 8 2 được A. 10 B. 16 C. 2 2 D.3 2 . kết qủa là Câu 2:Phương trình nào sau đây có hai nghiệm trái dấu: A. x2 x 0 B. x2 1 0 C. x2 1 0 D. x2 2x 5 0 Câu 3: Đường thẳng y mx m2 cắt đường thẳng y = x + 1 tại điểm có hoành độ bằng 1 khi và chỉ khi : A)m = 1 B)m = - 2 C)m =2 D)m = 1 hoặc m = -2 Câu 4: Hàm số y m 1 x 2012 đồng biến trên ¡ khi và chỉ khi A.m ¡ B. m > 1 C. m < 1 D. m 1. Câu 5: Phương trình x2 1 . x 3 0 có tập nghiệm là A.1;3 B. 1;1 C. 3 D. 1;1;3 . Câu 6: Cho đường tròn (O;R) có chu vi 4 cm . Khi đó hình tròn (O;R) có diện tích bằng A.4 cm2 B. 3 cm2 C. 2 cm2 D. cm2 . 3 Câu7: Biết sin , khi đó cos bằng A.2 B. 3 C. 4 D.5 . 5 5 5 5 3 Câu 8: Một hình trụ có chiều cao bằng 3cm, bán kính đáy bằng 4cm. Khi đó diện tích mặt xung quanh của hình trụ đó bằng A. 12 cm2 B. 24 cm2 C. 40 cm2 D. 48 cm2 . PHẦN 2 – Tự luận (9điểm): x2 x x x Câu 1.(1,5 điểm): Cho biểu thức : P (với x 0 và x 1 ) x x 1 x 1 1) Rút gọn biểu thức P. 2)Tìm x biết P = 0. Câu 2.(1,5 điểm): Cho phương trình x2 x 2m 0 (với m là tham số) 2 1)Giải pt với m = 1. 2)Tìm m để pt trên có hai nghiệm phân biệt x1; x2 mà x1 x1x2 2 . 23
- 1 1 4 Câu 3.(1,0 điểm): Giải hệ phương trình: x y x(1 4y) y 2 Câu 4.(3,0 điểm):Cho nửa đường tròn (O)đường kính AB. Điểm C thuộc nửa đường tròn (O)( CB < CA,C B).Gọi D là điểm chính giữa của cung AC,E là giao điểm của ADvà BC. 1)CMR: ABE cân tại B. 2)Gọi F là điểm đối xứng A qua C. Chứng minh E·FA E·BD. 3)Gọi H là giao điểm của AC và BD, EH cắt AB tại K, KC cắt đoạn EF tại I. HF EI EK Chứng minh rằng: a)Tứ giác EIBK nội tiếp b) . BC BI BK Câu 5.(1,0 điểm): Giải phương trình : x 3x 2 3 2x x3 x2 x 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10THPT THỪA THIÊN HUẾ Khóa ngày 24-6-2011 Bài 1: (2,5 điểm ) 2 2 3 a)Rút gọn biểu thức :A=3 2 3 b)Rút gọn biểu thức : B = 24 3 2 2x + 6y = 7 c)Không sử dụng máy tính cầm tay, giải hệ phương trình : 5x 2y = 9 1 Bài 2:Cho hàm số y= x2 có đồ thị (P) và hàm số y =mx – 2 m – 1 ( m 0) có đồ thị (d) 4 a)Trên cùng một mặt phẳng tọa độ, vẽ đồ thị (P) và đồ thị (d) khi m=1. b)Tìm điều kiện của m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1 và x2. 2 2 Khi đó xác định m để x1 x2 + x1x2 = 48 . Bài 3 (1 điểm)Trong một phòng có 144 người họp, được sắp xếp ngồi hết trên dãy ghế (số người trên mỗi dãy ghế đều bằng nhau).Nếu người ta thêm vào phòng họp 4 dãy ghế nữa, bớt mỗi dãy ghế ban đầu 3 người và xếp lại chỗ ngồi cho tất cả các dãy ghế sao cho số người trên mỗi dãy ghế đều bằng nhau thì vừa hết các dãy ghế.Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế ? Bài 4 (1,25 điểm)Cho tam giác ABC vuông ở A (hình bên) A a) Tính sin B.Suy ra số đo của góc B. 8 cm b) Tính các độ dài HB,HC và AC. 4 cm B H C Bài 5 (1,5 điểm )Cho ABC nhọn nội tiếp (O;R).Vẽ các đường cao BD và CE (D AC,E AB) và gọi H là trực tâm của tam giác ABC.Vẽ hình bình hành BHCG a)Chứng minh:Tứ giác AEHD nội tiếp và điểm G thuộc đường tròn (O;R). b)Khi đường tròn (O;R) cố định, hai điểm B,C cố định và A chạy trên (O;R) thì H chạy trên đường nào? Bài 6: (1,25 điểm)Cho hình chữ nhật MNDC nội tiếp trong nửa đường tròn tâm O, đường kính AB (M,N thuộc đoạn thẳng AB và C,D ở trên nửa đường tròn.Khi cho nửa đường tròn đường kính AB và hình chữ nhật MNDC quay một vòng quanh đường kính AB cố định, ta được một hình trụ đặt khít vào trong hình cầu đường kính AB.Biết hình cầu có tâm O, bán kính R=10 cm và hình trụ có bán kính đáy r= 8 cm đặt khít vào trong hình cầu đó.Tính thể tích hình cầu nằm ngoài hình trụ đã cho. 24