Đề cương ôn tập Giữa Học kì 1 môn Toán Lớp 10
Bạn đang xem tài liệu "Đề cương ôn tập Giữa Học kì 1 môn Toán Lớp 10", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_tap_giua_hoc_ki_1_mon_toan_lop_10.doc
Nội dung text: Đề cương ôn tập Giữa Học kì 1 môn Toán Lớp 10
- ĐỀ ÔN TẬP GIỮA HỌC KỲ 1 Câu 1.: Cho 2 tập hợp A = x R / (3x x2 )(2x2 5x 2) 0 , B = n N / 3 n2 20 , chọn mệnh đề đúng? A. A B 2 B. A B 2,3 C. A B 3,4 D. A B 3 Câu 2. Cho hai tập A 1;5 và B 0;7. Khi đó tập C A B có kết quả là: A. C 0;5 B. C 1;7 C. C 0;5 D. C 5;7 Câu 3. Cho ba tập hợp: X 4;3 , Y x R : 2x 4 0, x 5 ,Z x R : (x 3)(x 4) 0 . Chọn câu đúng nhất: A. X Y B. Z X C. Z X Y D. Z Y Câu 4: Lớp 10A có 7 HS giỏi Toán, 5 HS giỏi Lý, 6 HS giỏi Hoá, 3 HS giỏi cả Toán và Lý, 4 HS giỏi cả Toán và Hoá, 2 HS giỏi cả Lý và Hoá, 1 HS giỏi cả 3 môn Toán , Lý, Hoá . Số HS giỏi ít nhất một môn (Toán, Lý , Hoá ) của lớp 10A là: A. 9 B. 18 C. 10 D. 28 Câu 5: Cho tập hợp A x ¡ | x 3k, k ¢ , 10 x 100 . Tổng các phần tử của tập hợp A bằng A. 1674 . B. 1566 . C. 1767 . D. 1665 . Câu 6: Cho hai tập A 0;5 ; B 2a;3a 1 , a 1 . Với giá trị nào của a thì A B . 5 5 a a 2 1 5 2 1 5 A. . B. a . C. . D. a . 1 3 2 1 3 2 a a 3 3 Câu 7: Mệnh đề phủ định của mệnh đề: x ¡ , x2 x 5 0 là: A. x ¡ , x2 x 5 0 B. x ¡ , x2 x 5 0 C. x ¡ , x2 x 5 0 D. x ¡ , x2 x 5 0 Câu 8: Cho 2 tập hợp khác tập : A m 1;4;B 2;2m 2 (m ¡ ) . Số giá trị nguyên của m để A B là: A. 4 B. 1 C. 2 D. 3 Câu 9: Hàm số nào đồng biến trên ¡ . A. y 4x 5 B. y 2x 1 C. y 1 x D. y 3 2x 2x 3 Câu 10: Cho hàm số y .Tập xác định của hàm số là: x 1 A. ¡ B. 1; C. 1; D. ¡ \ 1 Câu 11: Trong các hàm số sau đây, hàm số nào là hàm số chẵn? A. y 2x3 3x B. y 2x4 3x2 x C. y x 3 x 2 D. y x 1 x 1 Câu 13: Biết đồ thị hàm số y ax b là đường thẳng đi qua K(5; 4) và vuông góc với đường thẳng y x 4 .Giá trị của biểu thức Abằng a 2b A. 0 B. -2 C. 1 D. -1 Câu 14: Xác định hàm số y ax b , biết đồ thị hàm số đi qua hai điểm A 0;1 và B 1;2 A. y 3x 1 B. y x 1 C. y 3x 1 D. y 3x 2 Câu 15: Cho hàm số y x 1 có đồ thị là đường thẳng . Đường thẳng tạo với hai trục tọa độ một tam giác có diện tích bằng 3 1 A. 2 B. C. 1 D. 2 2
- Câu 16: Xác định đường thẳng y ax b , biết hệ số góc bằng 2 và đường thẳng qua A 3;1 A. y 2x 5 B. y 2x 2 C. y 2x 7 D. y 2x 1 Câu 17: Tập xác định của hàm số y 5 3x là 5 A. D ¡ B. D ; C. D 5; D. 3 D 3;5 Câu 18: Tập xác định của hàm số y 4 x 2 x là A. D 4;2 B. D 2;4 C. D ¡ D. D 4; 2 Câu 19: Tìm m để parabol y x2 2x cắt đường thẳng y m tại 2 điểm phân biệt? A. m 1 B. m 0 C. m 2 D. m 1 Câu 20: Xác định hàm số bậc hai y 2x2 bx c , biết đồ thị của nó qua điểm M 0;4 và có trục đối xứng x 1 A. y 2x2 x 4 B. y 2x2 4x 3 C. y 2x2 3x 4 D. y 2x2 4x 4 Câu 21: Giá trị nhỏ nhất của hàm số y 2x2 x 3 là 25 21 A. 2 B. 3 C. D. 8 8 Câu 22: Cho hàm số y 2x2 6x 3 có đồ thị (P). Trục đối xứng của (P) là 3 3 A. x B. y C. x 3 D. y 3 2 2 Câu 23: Cho parabol P : y ax2 bx c đi qua ba điểm A 1;4 , B 1; 4 và C 2; 11 . Tọa độ đỉnh của P là: A. 2; 11 B. 3;6 C. 1;4 D. 2;5 Câu 24: Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y x2 3x trên đoạn 0;2 là: 9 9 9 9 A. M 0,m B. M ,m 0 C. M 2,m D. M 2,m 4 4 4 4 Câu 25: Đồ thị hình bên dưới là đồ thị của hàm số nào? y 1 O 1 x 2 2 2 2 A. .y x B.3 .x 2C. . y 2x 3x 1 y 2x 3x 1 D. y x 3x 1. Câu 26: Xác định parabol P : y 2x2 b x c , biết P có hoành độ đỉnh bằng 3 và đi qua điểm A 2; 3 . A. y 2x2 6x 7 B. y 2x2 6x 7 C. y 2x2 12x 4 D. y 2x2 12x 19 Câu 27: Giao điểm của P : y x2 4x và đường thẳng y x 2 là. A. 1; 3 ; 2; 4 B. 1; 1 ; 2;0 C. 0; 2 ; 2; 4 D. 3;1 ; 3; 5 Câu 28: Cho Parobol (P) : y x2 4x 3 và đường thẳng (d) : y mx 3 . Tổng các giá trị của m để 9 (P) cắt (d) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng là: 2 A. 7 B. -8 C. -1 D. -7 Câu 29: Cho hàm số y ax b có đồ thị là hình bên.
- y x -2 O Tìm a và b. 3 3 A. a 2 và b 3 . B. a 3 và b 3 . C. a và b 2 . D. a và b 3 2 2 Câu 30: Trong mặt phẳng với hệ tọa độ 0;i, j cho các véc tơ a 2.i 3j;b 3i . Khi đó a b bằng A a b ( 2;0) B a b ( 1;3) C a b (5; 3) Câu 31: Cho tam giác.A GọiBC lầnM , Nlượt là trung điểm của các cạnh . Hỏi cặpAB véctơ, AC nào sau đây cùng hướng? A. MN và CB . B. AB và MB . C. MA và MB . D. AN vàCA . Câu 32: Trong mặt phẳng tọa độ Oxy , choA 5;3 , B 7;8 . Tìm tọa độ của véctơ AB . A. 15;10 . B. 2; 5 . C. 2;5 . D. 2;6 . Câu 33: Cho 4 điểm bất kỳ A, B,C,O . Đẳng thức nào sau đây là đúng? A. AB AC BC . B. AB OB OA . C. OA CA CO . D. OA OB BA . Câu 34: Gọi G là trọng tâm của tam giác ABC . Đẳng thức nào sau đây đúng? A. GA GB GC 0 . B. GA GB GC . C. AG BG CG 0 . D. GA GB GC 0 . Câu 35: Cho tam giác ABC . Gọi I là trung điểm của AB . Tìm điểm M thỏa mãn hệ thức MA MB 2MC 0 . A. M là trung điểm của BC . B. M là trung điểm của IC . C. M là trung điểm của IA . D. M là điểm trên cạnh IC sao cho IM 2MC . Câu 36: Cho tam giác ABC có G là trọng tâm, biết rằng AG xAB y AC, x; y ¡ . Tính T x y . 2 4 1 1 A. T . B. T . C. T . D. T . 3 3 3 3 Câu 37: Trong mặt phẳng tọa độ Oxy, cho tam giác MNP có M 1; 1 , N 5; 3 và P thuộc trục Oy, trọng tâm G của tam giác nằm trên trục Ox. Toạ độ của điểm P là A. 0;2 . B. 2;4 . C. 2;0 . D. 0;4 . Câu 38: Cho 4 điểm A, B, C, D thỏa mãn AB CD . Khẳng định nào Sai? A. AB cùng phương với CD B. AB CD C. AB cùng hướng với CD D. AngượcB hướng với CD Câu 39: Trong hệ tọa độ Oxy, cho A 2;5 , B 1;1 ,C 3; 3 . Tọa độ điểm K thỏa mãn AK 3AB 2AC là: A. 2; 3 B. 3; 3 C. 3;3 D. 3;9 Câu 40: Với ba điểm phân biệt A, B, C. Đẳng thức nào sau đây đúng? A. AB AC BC B. AB BC AC C. AB BC CA D. AB AC BC Câu 41: Cho tam giác ABC có trọng tâm G, biết A 1;1 , B 1; 2 ,G 2;3 . Tọa độ điểm C là: 4 4 2 A. 4;2 B. 4;10 C. ;2 D. ; 3 3 3
- Câu 42: Trong hệ tọa độ Oxy, choA(4;2), B(10; 8) . Tọa độ trung điểm đoạn AB là: A. 6; 10 B. 7; 3 C. 6;10 D. 14; 6 Câu 43: Cho tam giác ABC, đặt a AB,b AC . Cặp vectơ nào sau đây cùng phương A. 3a 6b và a 2b B. a b và a b C. 2a b và a 2b D. 2a b và a 2b Câu 44: Trong hệ tọa độ Oxy, Cho A m 1;2 , B 2;5 2m ,C m 3;4 . Giá trị của m để ba điểm A, B, C thẳng hàng là: A. m 1 B. m 3 C. m 2 D. m 2 Câu 45: Cho tam giác ABC đều cạnh a . Tính AB AC a 3 A. B. a 3 C. 3 D. 2a 3 2 Câu 46: Cho tam giác AvàB C thỏa I I ,A Đẳng 3IB thức nào sau đây là đẳng thức đúng? 1 1 A. CI 3CB CA B. CI CA 3CB C. CI CA 3CB D. CI 3CB CA 2 2 Câu 47: Cho tam giác đều ABC cạnh bằng a và điểm M di động trên đường thẳng BC . Tính độ dài nhỏ nhất của vectơ u MA MB MC . a a 3 A. . B. 0 . C. . D. a . 2 2 Câu 48: Giả sử có hai lực F1 MA, F2 MB cùng tác động vào một vật tại điểm M. Biết cường độ hai lực · 0 F1, F2 lần lượt là 600N và 800N, AMB 90 . Tìm cường độ của lực tổng hợp tác động vào vật. A. 0N. B. 200N. C. 1400N. D. 1000N. Câu 49: Cho tam giácABC với trọng tâm G và I là trung điểm của AG . Gọi K là điểm nằm trên đoạn AC sao cho AK x AC . Tìm x để ba điểm B , I , K thẳng hàng. 1 2 1 1 A. x . B. x . C. x . D. x . 6 5 3 5 mx Câu 50: Số giá trị nguyên của m trên 20,3 để hàm số y xác định trên khoảng x m 2 1 0;1 :A. 20 B. 21 C. 19 D. 23 Câu 51: Cho ABCD là hình vuông cạnh a . Đường thẳng d đi qua điểm D và song song với AC. Điểm M di chuyển trên đường thẳng d. Giá trị nhỏ nhất của MA 2MB MC là: 3a 2 a 2 a 2 A. 3a 2 B. C. D. 4 4 2 Câu 52: Cho tam giác ABC với H, O, G lần lượt là trực tâm, tâm đường tròn ngoại tiếp, trọng tâm của tam giác. Khi đó x.GO y.GH 0 . Giá trị của x y là: A. 3 B. 1 C. 2 D. 2