Đề giới thiệu thi tuyển sinh vào THPT môn Toán Lớp 9 - Năm học 2018-2019 - Phòng giáo dục và đào tạo huyện Kinh Môn (Có đáp án)

doc 4 trang thaodu 4280
Bạn đang xem tài liệu "Đề giới thiệu thi tuyển sinh vào THPT môn Toán Lớp 9 - Năm học 2018-2019 - Phòng giáo dục và đào tạo huyện Kinh Môn (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_gioi_thieu_thi_tuyen_sinh_vao_thpt_lop_mon_toan_nam_hoc_2.doc

Nội dung text: Đề giới thiệu thi tuyển sinh vào THPT môn Toán Lớp 9 - Năm học 2018-2019 - Phòng giáo dục và đào tạo huyện Kinh Môn (Có đáp án)

  1. UBND HUYỆN KINH MÔN ĐỀ GIỚI THIỆU THI TUYỂN SINH VÀO THPT PHÒNG GIÁO DỤC & ĐÀO TẠO NĂM HỌC: 2018-2019 MÔN :TOÁN Lớp 9 Thời gian làm bài: 120 phút (Đề thi gồm có1. trang 6 câu) Câu I (2,0 điểm) x 1 1) Giải phương trình x 1 . 3 x 3 3 3 0 2) Giải hệ phương trình . 3x 2y 11 Câu II ( 1,0 điểm) 1 1 a + 1 1. Rút gọn biểu thức P = + : với a > 0 và a 4 . 2 a - a 2 - a a - 2 a 2.Một tam giác vuông có chu vi là 30 cm, độ dài hai cạnh góc vuông hơn kém nhau 7cm. Tính độ dài các cạnh của tam giác vuông đó. Câu III (2,0 điểm) 1 Trong mặt phẳng Oxy, cho đường thẳng (d):y = 2x -m +1 và parabol (P): y = x2 . 2 1) Tìm m để đường thẳng (d) đi qua điểm A(-1; 3). 2) Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ (x1; y1) và (x2; y2) sao cho x1x2 y1 + y2 48 0 . Câu IV (3,0 điểm) Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C A). Các tiếp tuyến tại B và C của (O) cắt nhau ở điểm D, AD cắt (O) tại E (E A) . 1) Chứng minh BE2 = AE.DE. 2) Qua C kẻ đường thẳng song song với BD cắt AB tại H, DO cắt BC tại F. Chứng minh tứ giác CHOF nội tiếp . 3) Gọi I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH. Câu V( 1,0 điểm) 1 1 Cho 2 số dương a, b thỏa mãn 2 . Tìm giá trị lớn nhất của biểu thức a b 1 1 Q . a4 b2 2ab2 b4 a2 2ba2 Hết
  2. ĐÁP ÁN VÀ BIỂU ĐIỂM Câu Nội dung Điểm Câu I (2,0đ) x 1 1) 1,0 x 1 x 1 3(x 1) 0,25 điểm 3 x 1 3x 3 0,25 2x 4 0,25 x 2.Vậy phương trình đã cho có một nghiệm x = -2 0,25 2) 1,0 x 3 3 3 0(1) 0,25 điểm Từ (1)=> x 3 3 3 3x 2y 11 (2) x=3 0,25 Thay x=3 vào (2)=>3.3 2y 11 2y=2 0,25 y=1 . Vậy hệ phương trình đã cho có nghiệm (x;y)=(3;1) 0,25 Câu II 1 1 a + 1 0,25 (1,0đ) P = + : a 2 - a 2 - a a 2 a 1. 1 + a a 2 a 0,25 =  a ( 2 a ) a + 1 a a 2 0,25 = a 2 - a a 2 0,25 = =-1 2 - a 2. Gọi độ dài cạnh góc vuông nhỏ là x (cm) (điều kiện 0 độ dài cạnh góc vuông còn lại là (x + 7 )(cm) Vì chu vi của tam giác là 30cm nên độ dài cạnh huyền là: 30–(x + x +7)= 23–2x (cm) Theo định lí Py –ta- go ta có phương trình 0,25 x2 + (x + 7)2 = (23 - 2x)2 x2 - 53x + 240 = 0 (1) Giải phương trình (1) được nghiệm x = 0,25 5; x = 48 Đối chiếu với điều kiện có x = 5 (TM đk); x = 48 (không TM đk) 0,25 Vậy độ dài một cạnh góc vuông là 5cm, độ dài cạnh góc vuông còn lại là 12 cm, độ dài cạnh huyền là 30 – (5 + 12) = 13cm Câu III (2,0đ) 1) 1,0 Vì (d) đi qua điểm A(-1; 3) nên thay x = -1 và y = 3 vào hàm số y 0,25 điểm = 2x – m + 1 ta có 2.(-1) – m +1 = 3 -1 – m = 3 0,25 m = -4 0,25 Vậy m = -4 thì (d) đi qua điểm A(-1; 3) 0,25
  3. 2) 1,0 Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình 0,25 1 điểm x2 2x m 1 2 x2 4x 2m 2 0 (1) ; Để (d) cắt (P) tại hai điểm phân biệt nên 0,25 (1) có hai nghiệm phân biệt ' 0 6 2m 0 m 3 Vì (x1; y1) và (x2; y2) là tọa độ giao điểm của (d) và (P) nên x1; x2 0,25 là nghiệm của phương trình (1) và y1 = 2x1 m 1 , y2 = 2x2 m 1 Theo hệ thức Vi-et ta có x1 + x2 = 4, x1x2 = 2m-2 .Thay y1,y2 vào x1x2 y1 +y2 48 0 có x1x2 2x1 +2x2 -2m+2 48 0 (2m - 2)(10 - 2m) + 48 = 0 m2 - 6m - 7 = 0 m=-1(thỏa mãn m ΔABD vuông tại B 0,25 Vì AB là đường kính của (O) nên AE  BE 0,25 Áp dụng hệ thức lượng trong ΔABD (A·BD=900 ;BE  AD) ta có 0,25 BE2 = AE.DE 2) 1,0 D 0,25 điểm Có DB= DC (t/c hai tiếp tuyến cắt nhau), OB = OC (bán kính của (O)) C E => OD là đường trung trực của đoạn BC => I O· FC=900 (1) F A H O B Có CH // BD (gt), mà AB  BD (vì BD là tiếp tuyến của (O)) 0,25 => CH  AB => O·HC=900 (2) 0,25 Từ (1) và (2) ta có O· FC+ O·HC = 1800 => tứ giác CHOF nội tiếp 0,25 3)1,0 Có CH //BD=>H· CB=C·BD (hai góc ở vị trí so le trong) mà 0,25 điểm ΔBCD cân tại D => C·BD D· CB nên CB là tia phân giác của H·CD do CA  CB => CA là tia phân giác góc ngoài đỉnh C của 0,25 AI CI ΔICD = (3) AD CD
  4. AI HI Trong ΔABD có HI // BD => = (4) 0,25 AD BD CI HI Từ (3) và (4) => = mà CD=BD CI=HI I là trung điểm 0,25 CD BD của CH Câu V Với a 0;b 0 ta có: (a2 b)2 0 a4 2a2b b2 0 a4 b2 2a2b 0,25 (1,0đ) 1 1 a4 b2 2ab2 2a2b 2ab2 (1) a4 b2 2ab2 2ab a b 1 1 Tương tự có (2) . Từ (1) và (2) 0,25 b4 a2 2a2b 2ab a b 1 Q ab a b 1 1 1 1 Vì 2 a b 2ab mà a b 2 ab ab 1 Q . 0,25 a b 2(ab)2 2 1 1 Khi a = b = 1 thì Q . Vậy giá trị lớn nhất của biểu thức là 0,25 2 2 Hết