Đề khảo sát chất lượng học kì II môn Toán Lớp 9 - Năm học 2017-2018 - Sở giáo dục và đào tạo Thanh Hóa (Có đáp án)

doc 4 trang thaodu 5170
Bạn đang xem tài liệu "Đề khảo sát chất lượng học kì II môn Toán Lớp 9 - Năm học 2017-2018 - Sở giáo dục và đào tạo Thanh Hóa (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_khao_sat_chat_luong_hoc_ki_ii_mon_toan_lop_9_nam_hoc_2017.doc

Nội dung text: Đề khảo sát chất lượng học kì II môn Toán Lớp 9 - Năm học 2017-2018 - Sở giáo dục và đào tạo Thanh Hóa (Có đáp án)

  1. Sở giáo dục & đào tạo KHẢO SÁT CHẤT LƯỢNG HỌC KÌ II 2017 - 2018 THANH HÓA Môn: TOÁN – LỚP 9 Thời gian: 90 phút (không kể thời gian giao đề) Họ và tên học sinh : Lớp: Trường: Số báo danh Giám khảo 1 Giám khảo 2 Số phách Điểm Giám khảo 1 Giám khảo 2 Số phách §Ò a Câu 1: (2,5 điểm) Giải các phương trình và hệ phương trình sau: x y 3 a/ b/ x2 – 12x + 11 = 0 x 2y 6 Câu 2: (2,0 điểm) Cho phương trình x2 – mx + 2m – 3 = 0 (1) với m là tham số a/ Giải phương trình (1) với m = 2 b/ Giả sử x1 và x2 là hai nghiệm của phương trình (1). Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m. Câu 3: (2,0 điểm) Cho parabol (P): y = x2 và đường thẳng (d): y = 2x+3 a) Vẽ parabol (P). b) Chứng minh (P), (d) cắt nhau tại hai điểm phân biệt và tìm hoành độ hai giao điểm đó. Câu 4: (3,5 điểm) Cho hình vuông ABCD cạnh có độ dài bằng a. Trên cạnh AD lấy điểm M và cạnh CD lấy điểm N sao cho góc MBN = 45 0. Gọi E và F lần lượt là giao điểm của BM, BN với AC. a/ Chứng minh: Tứ giác BENC nội tiếp, từ đó suy ra NE vuông góc với BM b/ Gọi I là giao điểm của NE và MF. Chứng minh: BI vuông góc với MN. c/ Tìm vị trí của M và N để diện tích tam giác MDN lớn nhất. Tính diện tích lớn nhất đó theo a.
  2. SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẤM BÀI KHẢO SÁT CHẤT LƯỢNG THANH HOÁ HỌC K Ì II LỚP 9 THCS - NĂM HỌC 2017 - 2018 Môn Toán - Đề A Câu Hướng dẫn chấm Biểu điểm Câu 1 a/ Giải được nghiệm của hệ pt là (x,y) = (4;1) 1,25 (2,5 đ) b/ Vì a + b + c = 0 pt có hai nghiệm: x = 1; x = 11 1,25 Câu 2 x2 – mx + 2m – 3 = 0 (1) (2,0 đ) a/ Với m = 2 , thay vào PT giải được nghiệm duy nhất x = 1 1,0 b/ Theo Vi et tính được: x1 + x2 = m; x1.x2 = 2m – 3 0,25 2(x1 + x2) – x1x2 = 3 là một hệ thức không phụ thuộc vào m 0,75 Câu 3 a. Vẽ (P). (2,0đ) Bảng giá trị: x -2 -1 0 1 2 0,5 y=x2 4 1 0 1 4 Vẽ đúng: 0,5 0,5 b. Xét phương trình hoành độ giao điểm (d) và (P) là: x2 = 2x + 3 0,5 x2 – 2x – 3 = 0. Giải PT tìm được hai nghiệm: x = -1; x = 3 Vậy (d) cắt (P) tại hai điểm phân biệt và hoành độ của chúng lần lượt x = -1; x = 3.
  3. A B E Câu 4 (3,5đ) M I F K D N C a/ C/m: góc EBN = góc ECN = 450 0,5 => Tứ giác BENC nội tiếp (đpcm) 0,25 => góc NEB + góc NCB = 1800 mà góc NCB = 900 => góc NEB = 900 => đpcm 0,5 b/ Chứng minh: BI vuông góc với MN +/ tương tự câu a => MF vuông góc với BN 0,5 +/ Xét tam giác BMN có: NE  BM; MF  BN; I là giao điểm của NE và MF => I là trực tâm 0,5 => BI  MN (đpcm) 0,25 c/ Gọi K là giao điểm của BI với MN +/ C/m được tứ giác MEFN nội tiếp => góc BMK = góc EFB = góc AMB => tam giác ABM = tam giác KBM (g.c.g) => MA = MK. Tương tự: NC = NK => MN = MA + NC => MD + DN + MN = 2a 0,25 +/ Áp dụng định lí Pi Ta Go và BĐT Cô Si có: 2 DM DN DM DN MN 2 MD2 ND2 MN 2 2 DM DN 2a DN DM MN 1 2 . 1 2 2 DM.DN 2 2 DM.DN 2 2 1 a2 1 2 => S DM.DN 2 1 a2 Dấu ”=” xảy ra khi DM DN 2 2 a DMN 2 0,5 2 Vậy: Diện tích tam giác DMN có GTLN là 2 1 a2 (đvdt) khi DM DN 2 2 a 0,25
  4. Chú ý: Học sinh làm cách khác đúng vẫn cho điểm tối đa