Đề ôn thi học kỳ II môn Toán Lớp 12 - Mã đề 102 - Năm học 2018-2019 - Trường THPT Thủ Đức

doc 4 trang thaodu 3590
Bạn đang xem tài liệu "Đề ôn thi học kỳ II môn Toán Lớp 12 - Mã đề 102 - Năm học 2018-2019 - Trường THPT Thủ Đức", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_on_thi_hoc_ky_ii_mon_toan_lop_12_ma_de_102_nam_hoc_2018_2.doc

Nội dung text: Đề ôn thi học kỳ II môn Toán Lớp 12 - Mã đề 102 - Năm học 2018-2019 - Trường THPT Thủ Đức

  1. TRƯỜNG THPT THỦ ĐỨC ĐỀ ÔN THI HỌC KÌ II – KHỐI 12 MÃ ĐỀ Năm học 2018 – 2019 Môn. TOÁN – Thời gian. 90 phút 102 A. TRẮC NGHIỆM Câu 1. Hàm nào trong các hàm sau là nguyên hàm của hàm số f (x) sin 2x cos 2x cos 2x A. cos 2x B. C. x cos 2x D. 2 2 Câu 2. Cho hàm số F(x) là nguyên hàm của hàm số f(x) trên K. Khẳng định nào sau đây là sai A. F’(x) = f(x) B. F(x) + C cũng là nguyên hàm của f(x) C. Có duy nhất F(x) là nguyên hàm của hàm số f(x) D. Mọi nguyên hàm của f(x) đều có dạng F(x) + C. 2x 3 Câu 3. Nguyên hàm của hàm số f (x) bằng x 2 A. 2 7ln x 2 C B. 2 7ln x 2 C C. 2x 7ln x 2 C D. 2x 7ln x 2 C Câu 4. Nguyên hàm của hàm số f (x) 3sin x 2cos x bằng A. 3cosx + 2sinx B. 3cosx + 2sinx + C C. -3cosx + 2sinx + C D. 3cosx - 2sinx + C Câu 5. Nguyên hàm của hàm số f (x) sin3 x cos x bằng 1 1 A. sin4 x C B. sin4 x C C. sin4 x C D. sin4 x C 4 4 Câu 6. Nguyên hàm của hàm số f (x) x 2 x bằng A. 2 x 2 2 x 2x C B. 2 x 2 2 x 2 C 2 2 2 2 4 C. 2 x 2 x 2x C D. 2 x 2 x 2 x 2 x C 5 5 3 Câu 7. Cho F(x) là một nguyên hàm của hàm số f(x) liên tục trên đoạn [a;b]. Khẳng định nào sau đây sai? a b a A. f (x)dx 0 B. f (x)dx f (x)dx a a b b b C. f (x)dx F(a) F(b) D. f (x)dx F(b) F(a) a a ex Câu 8. Nguyên hàm của hàm số f (x) là ex 2 A. 2ln(ex 2) C B. ln(ex 2) C C. ex ln(ex 2) C D. e2x C Câu 9. Thể tích V của khối tròn xoay thu được khi quay xung quanh trục Ox hình phẳng giới hạn bởi các đường y x2 4x 4, y 0, x 0, x 3 bằng 53 33 3 35 A. V B. V C. V D. V 5 5 5 3 2 Câu 10. Biết ln xdx a ln 2 b với a,b ¤ . Khi đó tổng a b bằng 1 A. -1 B. 2 C. 1 D. -2 d d b Câu 11. Cho hàm số f(x) liên tục trên [a; d]. Biết f x dx 5; f x dx 2 với a b d thì f x dx a b a bằng A. -2 B. 7 C. 0 D. 3 Câu 12. Biết I f x xexdx và f 0 2016 , biểu thức I bằng A. I xex ex 2017 B. I xex ex 2017 C. I xex ex 2016 D. I xex ex 2016 Trang 1/4 - Mã đề thi 101
  2. 2x 3 a b Câu 13. Biết rằng dx ln 2x 1 ln x 1 C . Khi đó tích a.b bằng 2x2 x 1 3 3 10 10 A. 10 B. -10 C. D. 9 9 x 1 Câu 14. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số y f (x) và các trục tọa độ là biểu x 2 3 thức có dạng mln n . Khi đó tích m.n bằng 2 A. 3 B. 1 C. 2 D. -3 3 3 e Câu 15. Tích phân I 2x 1 ln x dx m.e2 n . Khi đó tích m.n bằng 1 1 3 3 A. B. 0 C. D. 4 16 4 Câu 16. Cho số phức z a bi . Tìm mệnh đề đúng trong các mệnh đề sau A. z z 2bi B. z z 2a C. z.z a2 b2 D. z2 z 2 Câu 17. Cho số phức z 2 3i . Số phức liên hợp của z có điểm biểu diễn là A. (2; 3) B. (-2; -3) C. (2; -3) D. (-2; 3) 2 Câu 18. Cho số phức z 2 3i . Tìm phần thực và phần ảo của số phức z A. Phần thực bằng 7 và phần ảo bằng 6 2i B. Phần thực bằng 7 và phần ảo bằng 6 2 C. Phần thực bằng 7 và phần ảo bằng 6 2 D. Phần thực bằng 7 và phần ảo bằng 6 2i Câu 19. Cho hai số phức z1 4 i và z2 1 3i . Tính z1 z2 A. z1 z2 17 10 B. z1 z2 13 C. z1 z2 25 D. z1 z2 5 Câu 20. Cho số phức z = 5 + 2i. Tìm phần thực và phần ảo của số phức z A. Phần thực bằng -5 và phần ảo bằng -2 B. Phần thực bằng 5 và phần ảo bằng 2 C. Phần thực bằng 5 và phần ảo bằng -2 D. Phần thực bằng 5 và phần ảo bằng -2i Câu 21. Xét phương trình 3z4 2z2 1 0 trên tập số phức, khẳng định nào sau đây đúng? A. Phương trình có 2 nghiệm thực B. Phương trình có 3 nghiệm phức C. Phương trình có 1 nghiệm z = 0 D. Phương trình vô nghiệm Câu 22. Cho số phức z thỏa mãn (2 - i)z = (2 + i)(1- 3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là A. M(3; 1 ) B. M(3; -1) C. M(1; 3) D. M(1; -3) Câu 23. Cho số phức z có phần ảo âm, gọi w 2z z z i . Khi đó khẳng định nào sau đây về số phức w là đúng ? A. w là số thực B. w có phần thực bằng 0 C. w có phần ảo là số thực âm D. w có phần ảo là số thực dương 1 Câu 24. Cho số phức z 1 3i . Số phức bằng z 1 1 3 1 1 3 1 1 A. i B. i C. 1 3i D. 1 3i z 4 4 z 2 2 z z Trang 2/4 - Mã đề thi 101
  3. Câu 25. Trong không gian với hệ tọa độ Oxyz, xét vị trí tương đối của hai đường thẳng x 1 t x 1 y 1 z 12 d : và d : y 2 2t (t ¡ ) 1 2 1 1 3 z 3 t A. d1 và d2 cắt nhau B. d1 và d2 trùng nhau C. d1 và d2 chéo nhau D. d1 và d2 song song Câu 26. Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng qua điểm M(1; 0; 0) và có vectơ r pháp tuyến n 1;2;1 có dạng A. x 2y z 0 B. x 2y z 2 0 C. x 2y z 1 0 D. x 2y z 1 0 Câu 27. Trong không gian với hệ tọa độ Oxyz, cho điểm A 3;5; 7 ,B 1;1; 1. Tọa độ trung điểm I của đoạn thẳng AB là A. I 1; 2;3 . B. I 2; 4;6 . C. I 2;3; 4 . D. I 4;6; 8 . Câu 28. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình tham số x 2 t d : y 1 2t (t ¡ ) . Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng d z 5t r r r r A. b ( 1;2;0). B. v (2;1;0). C. u ( 1;2; 5). D. a (2;1; 5). Câu 29. Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua gốc tọa độ và song song với mặt phẳng Q :5x 3y 2z 3 0 có dạng A. (P) :5x 3y 2z 0 B. P :5x 3y 2z 0 C. P :5x 3y 2z 0 D. P : 5x 3y 2z 0 Câu 30. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M 2;1; 2 và N 4; 5;1 . Độ dài đoạn thẳng MN bằng A. 7 B. 41 C. 7 D. 49 Câu 31. Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x 5 2 y 4 2 z2 9. Tìm tọa độ tâm I và bán kính R của mặt cầu (S) A. I 5; 4;0 và R = 9 B. I 5; 4;0 và R = 3 C. I 5;4;0 và R = 9 D. I 5;4;0 và R = 3 x 2 y z 1 Câu 32. Trong không gian Oxyz, cho đường thẳng : và mặt phẳng 2m 1 1 2 (P) : x y 2z 3 0 . Giá trị của m để đường thẳng ∆ song song với mp(P) là A. m = 3 B. m = -1 C. m = 2 D. m = 0 Câu 33. Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình tham số của đường thẳng ∆ đi qua điểm A(1; 4; 7) và vuông góc với mặt phẳng (P) : x 2y 2z 3 0 x 1 2t x 1 2t x 1 t x 1 t A. y 4 2t (t ¡ ) B. y 4 4t (t ¡ ) C. y 2 4t (t ¡ ) D. y 4 2t (t ¡ ) z 7 3t z 7 3t z 2 7t z 7 2t Câu 34. Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 3;2;1 , B 1;3;2 ,C 2;4; 3 . Tính tích vô uuur uuur hướng AB.AC uuur uuur uuur uuur uuur uuur uuur uuur A. AB.AC 6 B. AB.AC 4. C. AB.AC 4. D. AB.AC 2. x 1 y z 2 Câu 35. Trong không gian với hệ tọa độ Oxyz, cho điểm I(0; 0; 3) và đường thẳng d : . 1 2 1 Phương trình mặt cầu (S) có tâm I và cắt d tại hai điểm A, B sao cho ∆IAB vuông tại I có dạng Trang 3/4 - Mã đề thi 101
  4. 2 8 2 8 A. S : x2 y2 z 3 B. S : x2 y2 z 3 3 3 2 4 2 4 C. S : x2 y2 z 3 D. S : x2 y2 z 3 3 3 B. TỰ LUẬN 2 Câu 1: Tính tích phân I 1 3sin x cos x dx . 0 Câu 2: Tìm tập hợp các điểm M( x; y ) biểu diễn số phức z x yi biết 2 z i z z 2i Câu 3: Trong không gian Oxyz , cho hai đường thẳng x 3 y z x 2 y 1 z d : và d : . 1 1 2 1 2 2 1 2 Viết phương trình mặt phẳng (P) chứa (d1) và song song với (d2). Trang 4/4 - Mã đề thi 101