Đề thi kiểm tra học kì II môn Toán Lớp 9 - Năm học 2017-2018 - Phòng giáo dục và đào tạo quận Ba Đình (Có đáp án)

pdf 5 trang thaodu 3850
Bạn đang xem tài liệu "Đề thi kiểm tra học kì II môn Toán Lớp 9 - Năm học 2017-2018 - Phòng giáo dục và đào tạo quận Ba Đình (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfde_thi_kiem_tra_hoc_ki_ii_mon_toan_lop_9_nam_hoc_2017_2018_p.pdf

Nội dung text: Đề thi kiểm tra học kì II môn Toán Lớp 9 - Năm học 2017-2018 - Phòng giáo dục và đào tạo quận Ba Đình (Có đáp án)

  1. PHÒNG GD&ĐT QUẬN BA ĐÌNH ĐỀ KIỂM TRA HỌC KỲ II MÔN TOÁN 9 Năm học 2017 - 2018 ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút (Đề thi gồm 01 trang) 213x Bài I (2,0 điểm). Cho biểu thức A : với xx 0; 9 x 9 xx 33 1) Rút gọn biểu thức A 5 2) Tìm x để A 6 3) Tìm giá trị nhỏ nhất của biểu thức A Bài II (2,0 điểm). Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai đội công nhân cùng làm một công việc thì làm xong trong 8 giờ. Nếu mỗi đội làm một mình xong công việc đó, đội thứ nhất cần ít thời gian hơn so với đội thứ hai là 12 giờ. Hỏi mỗi đội làm một mình xong công việc đó trong bao lâu? Bài III (2,0 điểm). 2 x5 4 y2 1) Giải hệ phương trình 1 x5 3 y2 2) Cho phương trình xmxm22 21 0 a) Giải phương trình khi m = 4 22 b) Tìm m để phương trình có hai nghiệm phân biệt x1; x2 sao cho x12 xxx4. 12 Bài IV (3,5điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O bán kính R và AH là đường cao của tam giác ABC. Gọi M, N thứ tự là hình chiếu của H trên AB, AC 1) Chứng minh tứ giác AMHN là tứ giác nội tiếp 2) Chứng minh ABC ANM 3) Chứng minh OA vuông góc với MN 4) Cho biết AH R 2 . Chứng minh M, O, N thẳng hàng. Bài V (0,5điểm). Cho a, b > 0 thỏa mãn ab 2 . Tìm giá trị lớn nhất của biểu thức Pab 11 ba Hết
  2. PHÒNG GD&ĐT QUẬN BA ĐÌNH HƯỚNG DẪN CHẤM BÀI THI HỌC KỲ II MÔN TOÁN 9 Năm học 2017 - 2018 Thứ tự Đáp án Điểm Bài I 1) Rút gọn: với 0; 9 0,75 (2 điểm) 2√ 1 3 : 9 √ 3 √ 3 2√ √ 3 √ 3 . 0,25 √ 3√ 3 √ 3√ 3 3 2√ √ 3 √ 3 0,25 . √ 3√ 3 3 √ 1 √ 3 0,25 2) Tìm x để 0,75 √ 1 5 √ 3 6 0,25 ⇔6√ 15√ 3 ⇔ √ 9 0,25 ⇔ 81 đ 0,25 3) Tìm GTNN của A 0,5 √ 1 2 1 √ 3 √ 3 Do 0⇔ ớ ọ ỏ ã đđ 0,25 Dấu “=” xảy ra ⇔ x= 0 đ Vậy GTNN của A: minA= ⇔ x= 0 0,25
  3. Bài II Gọi thời gian đội thứ nhất làm một mình xong việc là x ( đv: giờ, x >8) 0,25 (2 điểm) Vậy thời gian đội thứ hai làm một mình xong việc là x+12 (giờ) Mỗi giờ đội thứ nhất làm được (công việc) Mỗi giờ đội thứ hai làm được (công việc) 0,75 Theo bài ra, mỗi giờ cả hai đội làm được công việc nên ta có phương trình : 1 1 1 0,25 12 8 Giải phương trình ta được x=-8(ktmđk); x=12 (TMĐK) 0,5 Vậy thời gian đội thứ nhất làm một mình xong việc là 12 giờ; thời gian đội thứ hai làm một mình xong việc là 24 giờ. 0,25 Bài III (2điểm) 2 x5 4 y2 Giải Hệ PT 1 x5 3 y2 Đk: 0;4 0,25 Đặt a=|5|; , Đk: 0 1) 1 điểm √ 24 Giải HPT: được ; 0,5 3 Giải được ∈ ; ; và do 1 nên không có y thỏa mãn 0,25 KL: Hệ phương trình vô nghiệm (Nếu HS nhận thấy không có y t/m nên HPT vô nghiệm mà không cần tìm x vẫn cho 0,25) 2) 1 điểm Cho phương trình xmxm22 21 0 a) Giải PT khi m=4 Với m=4, giải PT: 10 16 được ∈2; 8 0,5 b) PT đã cho có 2 nghiệm phân biệt ⇔∆0⇔ 0,25 Theo Vi-et có 2 1 ; . Xét 4√. ⇔ 2. 4√. 4 1 2 4√ ⇔2 844|| 0 TH1: 0⇒ 620 ⇔ 3√7ạ đ; 3√7đ TH2: 0⇒ 2 2 0 ⇔ ô ó ỏ ã 0,25 Vậy 3√7 thỏa mãn yêu cầu đề bài.
  4. Bài IV x (3,5 A điểm) y N 0,25 M O C B H D 1) - Giải thích 90 0,25 -Tính tổng 180 0,25 - KL : AMHN là tứ giác nội tiếp 0,25 2) Cách 1: cm ( do tg AMHN nội tiếp) 0,5 ⇒ (cùng phụ với ) 0,25 ⇒ 0,25 Cách 2: Cm AM.AB = AN.AC (= AH2) ⇒∆ ∼ ∆ ⇒ (cho điểm tương ứng như cách 1) 3) Cách 1: Kẻ đường kính AD (góc nt chắn cung DC) (cmt) 0,5 Có 90 (góc nt chắn nửa đtr) 0,25 ⇒ 90 ⇒ 0,25 Cách 2: Kẻ tiếp tuyến xAy của (O) c/m: (góc nt, góc tạo bởi tt và dây cùng chắn cung AC) (cmt) Vậy , ở vị trí slt ⇒ // xy mà AOxy (do xAy là TT của (O)) ⇒ (cho điểm tương ứng như cách 1) 4) Có . 2 . (0,5 ⇒ . . điểm) ⇒∆∼∆ ⇒ 90 0,25 CMTT : 90 Vậy 180 ⇒ O, M, N thẳng hàng. 0,25
  5. Bài V (0,5 Có √221 21 điểm) Áp dụng BĐT Cô si cho hai số không âm 21 21 21 ; 21 2 2 3 2 3.2 2 ⇒ √2 4 2 2 0,25 ⇒2√2 2 1 Dấu “=” xảy ra ⇔ ⇔1 2 1 Vậy P có GTLN là 2√2 khi 1 0,25 Chú ý: Học sinh làm theo cách khác mà đúng hoặc có hướng đúng thì giáo viên dựa vào hướng dẫn chấm chia biểu điểm tương ứng! Hết