Đề thi thử kỳ thi THPT Quốc gia môn Toán lần 2 năm 2015 - Trường THPT Lý Thái Tổ (Có đáp án)

pdf 6 trang thaodu 3140
Bạn đang xem tài liệu "Đề thi thử kỳ thi THPT Quốc gia môn Toán lần 2 năm 2015 - Trường THPT Lý Thái Tổ (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfde_thi_thu_ky_thi_thpt_quoc_gia_mon_toan_lan_2_nam_2015_truo.pdf

Nội dung text: Đề thi thử kỳ thi THPT Quốc gia môn Toán lần 2 năm 2015 - Trường THPT Lý Thái Tổ (Có đáp án)

  1. SỞ GD & ĐT BẮC NINH ĐỀ THI THỬ KỲ THI THPT QUỐC GIA LẦN 2 NĂM TRƯỜNG THPT LÝ THÁI TỔ 2015 Môn: TOÁN Thời gian: 180 phút, không kể thời gian phát đề. Ngày thi 09/03/2015 Câu 1 (2.0 điểm) 32 Cho hàm số: y x 3 (m 2 )x 9 x m 1 (Cm ) với m là tham số a. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m. 0 b. Gọi là tiếp tuyến với đồ thị (Cm ) tại giao điểm của đồ thị (Cm ) với trục tung. Viết phương trình tiếp tuyến biết khoảng cách từ điểm A(14 ; ) đến đường thẳng bằng 82. Câu 2 (1.0 điểm) Giải phương trình: cos2 x cosxsinx sinx sin2 x cosx 5 Câu 3 (1.0 điểm) Tính tích phân: I (3 x 1 ) 2 x 1 dx 1 Câu 4 (1.0 điểm) a. Giải bất phương trình: log2 (x 1 ) 2 log 4 ( 5 x) 1 log 2 (x 2 ) b. Có 6 tấm bìa được đánh số 0, 1, 2, 3, 4, 5. Lấy ngẫu nhiên 4 tấm bìa và xếp thành hàng ngang từ trái sang phải. Tính xác suất để xếp được một số tự nhiên có 4 chữ số. Câu 5 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxyz, cho hai điểm A(;1 1 ;),B(;; 0 2 0 1 ) và mặt phẳng(P):2 x y z 1 0 .Tìm tọa độ điểm C trên (P) sao cho mặt phẳng (ABC) vuông góc với mặt phẳng (P) và tam giác ABC có diện tích bằng 14 . Câu 6 (1.0 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 3a và ABC 60o . Tính theo a thể tích khối tứ diện SACD và khoảng cách giữa hai đường thẳng AB và SD biết SA SB SC a7 . Câu 7 (1.0 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có đường phân giác trong góc ABC đi qua trung điểm M của cạnh AD, đường thẳng BM có phương trình: x y 20 ,điểm D nằm trên đường thẳng có phương trình: x y 90 .Tìm tọa độ các đỉnh của hình chữ nhật ABCD biết đỉnh B có hoành độ âm và đường thẳng AB đi qua E( 12 ; ). >> Truy cập để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 1
  2. x2 2 x 2 (x 2 x) 3 2 y ( 2 y 3 )x 2 1 Câu 8 (1.0 điểm) Giải hệ phương trình: 3 23 22x x x 2 3 2y 21x Câu 9 (1.0 điểm) Cho x, y là hai số thỏa mãn: x, y 1 và 34(x y) xy.Tìm giá trị lớn nhất và giá trị nhỏ 33 11 nhất của biểu thức: P x y 3 22 xy Hết SỞ GD& ĐT BẮC NINH ĐỀ THI THỬ THPT QUỐC GIA TRƯỜNG THPT LÝ THÁI TỔ LẦN 2 NĂM 2015 MÔN: TOÁN Câu 1: a. (1 điểm) TXĐ: D = R - Sự biến thiên: y’ = 3x2 – 12 x + 9 ; y’ = 0 0,25 - Giới hạn và tiệm cận: ; - Bảng biến thiên: 0,25 x 1 3 y’ + 0 - 0 + y - Hàm số đồng biến trên khoảng (- và nghịch biến trên khoảng (1;3) - Hàm số đạt cực đại tại x = 1; yCĐ = 3; đạt cực tiểu tại x = 3; yCT = -1 0,25 - Đồ thị: 0,25 b. (1 điểm) TXĐ: D= R, y’ = 3x2 – 6(m +2)x + 9 Giả sử M là giao điểm của đồ thị hàm số (Cm) với Oy M(0;-m-1) 0,25 Phương trình tiếp tuyến là y = 9x – m – 1 hay 9x – y – m -1 = 0 0,25 Ta có d(A, ) = = 0,25 >> Truy cập để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 2
  3. Vậy phương trình tiếp tuyến là y = 9x – 95; y = 9x + 69 0,25 Câu 2: Giải phương trình PT cos2x – sin2x + cosx sinx + sin2x – (sinx + cosx) = 0 0,25 (cosx – sinx) (cosx + sinx) + sinx(cosx + sinx) – (cosx + sinx) = 0 0,25 (cosx + sinx) (cosx – sinx + sinx – 1) = 0 0,25 (cosx + sinx) (cosx – 1) = 0 0,25 0,25 Vậy nghiệm của pt đã cho là x = , Câu 3: Tính tích phân Đặt t = t2 = 2x -1 tdt = dx Đổi cận x = 1 t =1 x = 5 t = 3 0,25 I = t.dt = +5)t2 dt = +5 )dt 0,25 = + ) = + – ) = 0,5 Câu 4: a. Giải bất pt: ĐK: 2 > Truy cập để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 3
  4. mp (ABC) nhận =(c+b+1;1-a-c;b-a+2) là 1 vtpt Vì (ABC) (P) = 0 -2a + 3b + c + 5 = 0 (2) 0,25 Mà SABC = [ ] = 2 (3) Từ (1), (2) ta có 0,25 Thay vào (3) ta được (-2a)2 + (3a)2 + a2 = 4.14 a2 = 4 0,25 Vậy toạ độ điểm C thoả mãn đề bài là C(2;2;-7); C(-2;-6;9) Câu 6: Do SA = SB = SC và tam giác ABC đều nên hình chiếu của đỉnh S trên (ABCD) là trọng tâm H của tam giác ABC ABC đều BH = a Ta có SACD = SABC = 0,25 vuông tại H nên ta có SH = = 2a Vậy VSACD = 0,25 Vì H là trọng tâm tam giác ABC nên 3 HD = 2 BD Do AB // CD nên d(AB, SD) = d(AB, (SCD)) = d(B,(SCD)) = d(H, (SCD)) Ta có = = 300 + 600 = 900 0,25 Mà SH CD Nên CD (SHC) Trong (SHC) kẻ HK SC (K SC) d(H, (SCD)) = HK Tam giác SHC vuông tại H nên = HK = vậy d(AB;SD) = 0,25 Câu 7 (1 điểm) >> Truy cập để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 4
  5. 0,25 - Kẻ đường thẳng đi qua E vuông góc BM tại H và cắt AC tại E’ H là trung điểm của EE’ Phương trình EH là x + y – 1 = 0 H = EH BM H(- Vì H là trung điểm EE’ E’(0;1) - Giả sử B(b;b+2) BM (b > Truy cập để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 5
  6. ( )3 + = 1 + + (4) 0,25 Xét hàm số f(t) = t3 + t với t R Ta có f’(t) = 3t2 + 1 > 0 , Hàm số f(t) đồng biến trên R 0,25 Do đó, (4) f( = f( Đặt a = (a trở thành: 0,25 - Với x = (3) 0). Khi đó xy = Từ giả thiết ta có: 3(x + y ) = 4xy (x+y)2 x + y 3 t 3 0,25 Vì x, y 1 nên (x -1) (y – 1) 0 xy – (x + y) + 1 Vậy ta có 3 Mặt khác từ giả thiết ta có : Suy ra P = (x + y)3 - 3 xy(x +y) – 3( 2 + t3 - t2 + 0,25 Ta có f’(t) = 3t2 - t - (t3(5t – 9) + (t4 – 16 )) > 0 với 0,25 Suy ra f(t) là hàm số đồng biến trên đoạn [3;4] Vậy giá trị nhỏ nhất của P là f(3) = khi t = 3 x = y = GTLN của P là f(4) = khi t = 4 0,25 >> Truy cập để học Toán – Lý – Hóa – Sinh – Văn – Anh tốt nhất! 6