Đề thi thử THPT Quốc gia môn Toán lần II - Năm học 2018-2019 - Cụm chuyên môn 01 (Có đáp án)

doc 23 trang thaodu 3500
Bạn đang xem 20 trang mẫu của tài liệu "Đề thi thử THPT Quốc gia môn Toán lần II - Năm học 2018-2019 - Cụm chuyên môn 01 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_thu_thpt_quoc_gia_mon_toan_lan_ii_nam_hoc_2018_2019_c.doc

Nội dung text: Đề thi thử THPT Quốc gia môn Toán lần II - Năm học 2018-2019 - Cụm chuyên môn 01 (Có đáp án)

  1. ĐỀ THI THỬ THPT QUỐC GIA LẦN II CỤM CHUYÊN MÔN 01 NĂM HỌC: 2018 – 2019 ĐỀ THI THAM KHẢO Môn thi: TOÁN (Đề thi có 06 trang) Thời gian làm bài: 90 phút Câu 1. Cho hai hàm số y loga x, y logb x (với a, b là hai số thực dương khác 1) có đồ thị lần lượt là C1 , C2 như hình vẽ. Khẳng định nào sau đây đúng? A. 0 b 1 a .B. 0 . a b 1 C. 0 b a 1 .D. 0 a 1 b Câu 2. Hình nón có diện tích xung quanh bằng 24π và bán kính đường tròn đáy bằng 3. Đường sinh của hình nón có độ dài bằng: A. 4.B. 8. C. 3. D. . 89 Câu 3. Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x 1 và x 4 , biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 x 4 ) thì được thiết diện là một hình lục giác đều có độ dài cạnh là 2x. A. V 126 3 .B. V .C. 1 26 3 .D. V 6 .3 3 V 63 3 Câu 4. Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức 1 A. .V 2 Bh B. . V BC.h .D. . V Bh V Bh 3 Câu 5. Trong không gian Oxyz, cho mặt cầu có phương trình x2 y2 z2 2x 4y 6z 9 0 . Tọa độ tâm I và bán kính R của mặt cầu là: A. I 1; 2;3 và R 5 .B. và . I 1;2; 3 R 5 C. I 1; 2;3 và R 5 .D. và . I 1;2; 3 R 5 1 Câu 6. Cho F x là một nguyên hàm của hàm số f x thỏa mãn F 5 2 và F 0 1 . Tính x 1 F 2 F 1 . A. 1 ln 2 .B. 0.C. .D. . 1 3ln 2 2 ln 2 Câu 7. Tìm nghiệm của phương trình log2 x 5 4 . A. x 13 .B. .C. .xD. 3 . x 11 x 21 Câu 8. Họ nguyên hàm của hàm số f x 2x ex là A. 2 ex C .B. .C.x2 ex C .D. 2x2 . ex C x2 ex C Câu 9. Cho hàm số y f x . Đồ thị hàm số y f ' x như hình vẽ. Đặt g x 3 f x x3 3x m , với m là tham số thực. Điều kiện cần và đủ để bất phương trình g x 0 nghiệm đúng với x 3; 3 là A. m 3 f 3 .B. m . 3 f 0 Trang 1/5
  2. C. m 3 f 1 .D. m . 3 f 3 Câu 10. Xét hai số thực a, b dương khác 1. Mệnh đề nào sau đây đúng? A. ln ab ln a.ln b .B. ln a b ln a .ln b a ln a C. ln .D. ln .ab bln a b ln b Câu 11. Trong không gian Oxyz, cho điểm A 4;0;1 và mặt phẳng P : x 2y z 4 0 . Mặt phẳng Q đi qua điểm A và song song với mặt phẳng P có phương trình là A. Q : x 2y z 5 0 .B. . Q : x 2y z 5 0 C. Q : x 2y z 5 0 .D. . Q : x 2y z 5 0 Câu 12. Trong không gian Oxyz, cho hai mặt phẳng P : x 2y 2z 6 0 và Q : x 2y 2z 3 0 . Khoảng cách giữa hai mặt phẳng P và Q bằng A. 3.B. 6.C. 1.D. 9. Câu 13. Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y x3 m 2 x2 m2 m 3 x m2 cắt trục hoành tại ba điểm phân biệt? A. 3.B. 2.C. 4.D. 1. 1 Câu 14. Cho đồ thị y f x như hình vẽ sau đây. Biết rằng f x dx a 2 2 và f x dx b . Tính diện tích S của phần hình phẳng được tô đậm. 1 A. .SB. b a . S a b C. .S a b D. . S a b Câu 15. Đường cong trong hình vẽ sau đây là đồ thị của hàm số nào? A. y x3 3x 1 .B. y x4 2 . x2 1 C. y x3 3x 1 .D. y x3 . 3x2 1 Trang 2/26
  3. 2 x3dx Câu 16. Biết a 5 b 2 c với a, b, c là các số hữu tỉ. Tính P a b c . 2 1 x 1 1 5 7 5 A. P .B. .C. P .D. . P P 2 2 2 2 Câu 17. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y 2x3 3x2 12x 10 trên đoạn  3;3 là: A. . 18 B. .C. 7. D.1 18. Câu 18. Cho hàm số y f x có đạo hàm liên tục trên ¡ và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây? x 1 0 1 y ' + 0 0 + 0 y 0 0 1 A. . B.1; . C. 1 ;. 0 D. . ;1 0;1 x 7 3 Câu 19. Đồ thị hàm số y có bao nhiêu đường tiệm cận đứng? x2 2x A. 2. B. 3.C. 1.D. 0. Câu 20. Trong không gian Oxyz, cho mặt phẳng P : 2x y z 4 0 . Khi đó mặt phẳng P có một vectơ pháp tuyến là     A. n1 2; 1;1 . B. .n 2 2;1;1 C. . D. n.4 2;1;1 n3 2;1;4 3 4 Câu 21. Cho a là số thực dương bất kì khác 1. Tính S loga a a . 3 13 A. .SB. .C. .D. S 7 . S S 12 4 4 Câu 22. Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng A. 6π.B. 15π.C. 9π.D. 18π. x 1 Câu 23. Đồ thị hàm số y có đường tiệm cận ngang là đường thẳng nào sau đây? 4x 1 1 1 A. .y B. . x C. . x D. 1 . y 1 4 4 Câu 24. Tập hợp tất cả các giá trị thực của tham số thực m để hàm số y ln x2 1 mx 1 đồng biến trên ¡ ? A. . 1;1 B. . 1;1 C. . ; 1D. . ; 1 Câu 25. Trong không gian Oxyz, phương trình của mặt phẳng P đi qua điểm B 2;1; 3 , đồng thời vuông góc với hai mặt phẳng Q : x y 3z 0, R : 2x y z 0 là: A. .2 x y 3z 14 0 B. . 4x 5y 3z 22 0 C. .4 x 5y 3z 22 0 D. . 4x 5y 3z 12 0 Trang 3/26
  4. Câu 26. Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x 2y 2z 2 0 và điểm I 1;2; 1 . Viết phương trình mặt cầu S có tâm I và cắt mặt phẳng P theo giao tuyến là đường tròn có bán kính bằng 5. A. S : x 1 2 y 2 2 z 1 2 34 .B. S : x 1 2 y 2 2 .z 1 2 16 C. S : x 1 2 y 2 2 z 1 2 25 .D. S : x 1 2 y 2 2 z . 1 2 34 Câu 27. Trong không gian với hệ tọa độ Oxyz, cho a i 3 j 2k . Tọa độ của vectơ a là A. 2; 3; 1 .B. .C. 3;2; 1 .D. . 2; 1; 3 1;3; 2 3 2 Câu 28. Tìm giá trị cực tiểu yCT của hàm số y x 3x . A. yCT 4 .B. .C. yCT 2 .D. . yCT 0 yCT 2 3 3 2 Câu 29. Cho f x dx 2 . Tính giá trị của tích phân L 2 f x x dx . 0 0 A. L 0 .B. .C. L .D. 5 . L 23 L 7 Câu 30. Cho cấp số cộng có u1 3;u10 24 . Tìm công sai d? 7 7 A. d .B. .C. d .D. 3 . d d 3 3 3 2x x Câu 31. Cho phương trình 2 5.2 6 0 có hai nghiệm x1, x2 . Tính P x1.x2 . A. P log2 6 .B. P .C. 2log2 3 .D. . P log2 3 P 6 Câu 32. Cho hình chóp S.ABCD đều có AB 2 và SA 3 2 . Bán kính của mặt cầu ngoại tiếp hình chóp đã cho bằng 7 33 9 A. .B. .C. .D. 2. 4 4 4 Câu 33. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA a 6 . Tính thể tích V của khối chóp S.ABCD. a3 6 a3 6 a3 6 A. V a3 6 .B. .C.V .D. V . V 4 6 3 Câu 34. Cho hình chóp S.ABC có SA  ABC , tam giác ABC vuông ở B. AH là đường cao của SAB . Tìm khẳng định sai. A. SA  BC .B. .C.A H  AC .D. A . H  SC AH  BC Câu 35. Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau? A. 12.B. 24.C. 64.D. 256. 1 Câu 36. Hàm số y 4 x 5 có tập xác định là A. D ¡ \4 .B. D .C. 4; .D. D . ;4 D ¡ x x 1 Câu 37. Biết bất phương trình log5 5 1 .log25 5 5 1 có tập nghiệm là đoạn a;b . Giá trị của a b bằng A. 2 log5 156 .B. 1 . C.lo g5 156 .D. 2 log5 1 .56 2 log5 26 Trang 4/26
  5. Câu 38. Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn theo quý (3 tháng), lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây? A. 212 triệu đồng.B. 216 triệu đồng.C. 210 triệu đồng.D. 220 triệu đồng. Câu 39. Tiếp tuyến với đồ thị hàm số y x3 3x2 2 tại điểm có hoành độ bằng 3 có phương trình là A. y 30x 25 .B. y .C.9 x 25 .D. y 9x .25 y 30x 25 2 3 3 Câu 40. Cho f x dx 1 và f x dx 2 . Giá trị của f x dx bằng 1 2 1 A. . 3 B. .C. 3. 1D. 1. Câu 41. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC 2a, SA vuông góc với mặt phẳng đáy và SA 2a 3 . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng 2a 39 2a 3 a 39 2a A. .B. .C. .D. . 13 13 13 13 Câu 42. Trong không gian Oxyz, cho mặt cầu S : x 3 2 y 1 2 z 1 2 4 và hai điểm A 1;2; 3 ; B 5;2;3 . Gọi M là điểm thay đổi trên mặt cầu S . Tính giá trị lớn nhất của biểu thức 2MA2 MB2 . A. 5.B. 123.C. 65.D. 112. Câu 43. Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; còn để pha chế 1 lít nước táo, cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm và mỗi lít nước táo nhận được 80 điểm. Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính T 2x2 y2 . A. T 43 .B. .C. T .D.66 . T 57 T 88 Câu 44. Sân trường có một bồn hoa hình tròn tâm O. Một nhóm học sinh lớp 12 được giao thiết kế bốn hoa, nhóm này định bồn hoa thành bốn phần bởi hai đường parabol có cùng đỉnh O và đối xứng nhau qua O (như hình vẽ). Hai đường parabol cắt đường tròn tại bốn điểm A, B, C, D tạo thành một hình vuông có cạnh bằng 4m. Phần diện tích S1, S2 dùng để trồng hoa, phần diện tích S3 , S4 dùng để trồng cỏ. Biết kinh phí trồng hoa là 150.000 đồng/ 1m2 , kinh phí để trồng cỏ là 100.000 đồng/ m2 . Hỏi nhà trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn) A. 3.000.000 đồng.B. 3.270.000 đồng. C. 5.790.000 đồng.D. 6.060.000 đồng. Câu 45. Giả sử hàm số y f x liên tục, nhận giá trị dương trên 0; và thỏa mãn f 1 1 , f x f ' x 3x 1 , với mọi x 0 . Mệnh đề nào sau đây đúng? Trang 5/26
  6. A. 1 f 5 2 .B. 4 .C.f 5 5 .D. 2 f 5 .3 3 f 5 4 Câu 46. Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông. 1 45 2 10 A. .B. .C. .D. . 161 1771 77 1771 Câu 47. Cho lăng trụ đều ABC.EFH có tất cả các cạnh bằng a. Gọi S là điểm đối xứng của A qua BH. Thể tích khối đa diện ABCSFH bằng a3 3a3 a3 3a3 A. .B. .C. .D. . 6 6 3 3 Câu 48. Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? A. 0,96m3 .B. .C. 1,51 .mD.3 . 1,33m3 1,01m3 Câu 49. Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình x9 3x3 9x m 33 9x m có đúng hai nghiệm thực. Tính tổng các phần tử của S. A. 12 .B. 1.C. .D. 0. 8 Câu 50. Cho x, y là các số thực thỏa mãn log4 x y log4 x y 1 . Tìm giá trị nhỏ nhất của biểu thức P 2x y . 10 3 A. P 4 .B. .C. P 4 .D. .P 2 3 P min min min min 3 ĐÁP ÁN 1. A 2. B 3. B 4. B 5. A 6. C 7. D 8. B 9. A 10. D 11. D 12. A 13. A 14. A 15. C 16. C 17. A 18. D 19. C 20. A 21. C 22. D 23. A 24. C 25. C 26. D 27. D 28. A 29. B 30. D 31. C 32. C 33. D 34. B 35. B 36. C 37. C 38. A 39. C 40. B 41. A 42. B 43. C 44. B 45. D 46. D 47. D 48. B 49. D 50. C Trang 6/26
  7. LỜI GIẢI CHI TIẾT Câu 1. Chọn đáp án A Phương pháp Quan sát các đồ thị hàm số, nhận xét tính đồng biến nghịch biến và suy ra điều kiện của a, b. Cách giải Đồ thị hàm số C1 có hướng đi lên từ trái qua phải nên hàm số y loga x đồng biến hay a 1 . Đồ thị hàm số C2 có hướng đi xuống từ trái qua phải nên hàm số y logb x nghịch biến hay 0 b 1 . Do đó 0 b 1 a . Câu 2. Chọn đáp án B Phương pháp Sử dụng công thức tính diện tích xung quanh hình nón Sxq rl (với r là bán kính đáy, l là đường sinh hình nón). Cách giải S 24 Ta có diện tích xung quanh hình nón bằng S rl l xq 8 . xq r .3 Câu 3. Chọn đáp án B Phương pháp - Tính diện tích thiết diện theo x. b - Tính thể tích theo công thức V S x dx . a Cách giải 2x 2 3 Diện tích một tam giác đều cạnh 2x là x2 3 . 4 Diện tích hình lục giác đều bằng 6 lần diện tích một tam giác đều nên S x 6x2 3 . 4 4 4 Thể tích V S x dx 6x2 3dx 2x3 3 126 3 . 1 1 1 b Chú ý khi giải: Nhiều em có thể sẽ nhớ nhầm công thức thành V S x dx dẫn đến chọn nhầm đáp a án A là sai. Câu 4. Chọn đáp án B Phương pháp Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức V Bh . Cách giải Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức V Bh . Câu 5. Chọn đáp án A Phương pháp Mặt cầu x2 y2 z2 2ax 2by 2cz d 0 có tâm I a; b; c và bán kính R a2 b2 c2 d . Cách giải Mặt cầu x2 y2 z2 2x 4y 6z 9 0 có tâm I 1; 2;3 và bán kính R 1 4 9 9 5 . Trang 7/26
  8. Câu 6. Chọn đáp án C Phương pháp 1 Sử dụng công thức nguyên hàm du ln u C , dựa dữ kiện đề bài tìm được C, từ đó tính u F 2 F 1 Cách giải 1 ln x 1 C1 khi x 1 Ta có F x dx ln x 1 C x 1 ln 1 x C2 khi x 1 + Với F 5 2 ln 5 1 C1 2 C1 2 2ln 2 F x ln x 1 2 2ln 2 (khi x 1 ) + Với F 0 1 ln 1 0 C2 1 C2 1 F x ln 1 x 1 (khi x 1 ) Suy ra F 2 ln 2 1 2 2ln 2 2 2ln 2; F 1 ln 1 1 1 1 ln 2 Nên F 2 F 1 2 2ln 2 1 ln 2 1 3ln 2 . Câu 7. Chọn đáp án D Phương pháp m Sử dụng công thức loga f x m f x a . Cách giải 4 Ta có: log2 x 5 4 x 5 2 x 21 . Câu 8. Chọn đáp án B Phương pháp xn 1 Sử dụng công thức nguyên hàm cơ bản xndx C n 1 ; exdx ex C n 1 Cách giải x2 Ta có 2x ex dx 2xdx exdx 2. ex C x2 ex C 2 Câu 9. Chọn đáp án A Phương pháp - Biến đổi bất phương trình về dạng h x m . - Xét hàm số y h x trên đoạn 3; 3 và kết luận. Cách giải Ta có: g x 3 f x x3 3x m 0 3 f x x3 3x m 3 Điều kiện bài toán trở thành tìm m để 3 f x x 3x m,x 3; 3 . 3 Xét hàm h x 3 f x x 3x trên đoạn 3; 3 ta có: h' x 3 f ' x 3x2 3 3 f ' x x2 1 0 f ' x x2 1 Dựng đồ thị hàm số y x2 1 cùng một hệ trục tọa độ với đồ thị hàm số y f ' x bài cho ta được: 2 Xét trên đoạn 3; 3 thì f ' x x 1,x 3; 3 . Trang 8/26
  9. 2 Do đó f ' x x 1 0,x 3; 3 hay hàm số y h x đồng biến trên 3; 3 . Suy ra h 3 h x h 3 hay 3 f 3 h x 3 f 3 . Điều kiện bài toán thỏa m min h x h 3 3 f 3 . 3; 3 Vậy m 3 f 3 . Câu 10. Chọn đáp án D Phương pháp Sử dụng tính chất của công thức log a , với a,b,c 0;a 1 ta có b log bc log b log c;log log b log c;log b log b (giả sử các biểu thức có nghĩa) a a a a c a a a a Cách giải + A sai vì ln ab ln a ln b + B sai vì ta không có công thức log a của một tổng a + C sai vì ln ln a ln b b + Vì ln ab bln a nên D đúng Câu 11. Chọn đáp án D Phương pháp   Sử dụng tính chất Q / / P nQ / /nP Cách giải   P : x 2y z 4 0 có VTPT nP 1; 2; 1 nên Q / / P nQ 1; 2; 1 .  Q đi qua A 4;0;1 và nhận nQ 1; 2; 1 làm VTPT nên Q có phương trình là: 1 x 4 2 y 0 1 z 1 0 x 2y z 5 0 . Chú ý khi giải: Các em cũng có thể loại dần các đáp án bằng việc kiểm tra VTPT của Q và thay tọa độ điểm A vào các phương trình chưa bị loại để kiểm tra. Câu 12. Chọn đáp án A Phương pháp Sử dụng mối quan hệ về khoảng cách giữa hai mặt phẳng song song P và Q : d P , Q d M ; Q với M P . ax0 by0 cz0 d Cho M x0 ; y0 ; z0 và Q : ax by cz d 0 thì d M ; Q a2 b2 c2 Cách giải 1 2 2 6 Nhận thấy rằng P : x 2y 2z 6 0 và Q : x 2y 2z 3 0 song song vì 2 2 2 3 0 4.2 2.1 3 9 Nên lấy M 0;4;1 P thì d P , Q d M ; Q 3 . 12 22 2 2 9 Câu 13. Chọn đáp án A Trang 9/26
  10. Phương pháp Nhẩm nghiệm của phương trình hoành độ giao điểm, từ đó tìm điều kiện để phương trình hoành độ giao điểm có 3 nghiệm phân biệt. Cách giải Xét phương trình hoành độ giao điểm: x3 m 2 x2 m2 m 3 x m2 0 x 1 x2 m 3 x m2 0 x 1 0 x 1 2 2 2 2 x m 3 x m 0 x m 3 x m 0 Để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt thì phương trình x2 m 3 x m2 0 phải có hai nghiệm phân biệt khác 1 2 2 2 m 3 4m 0 3m 6m 9 0 1 m 3 2 2 2 1 m 3 .1 m 0 m m 4 0 luon dung Do đó với 1 m 3 thì đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Mà m ¢ nên m 0;1;2 . Câu 14. Chọn đáp án A Phương pháp Sử dụng công thức tính diện tích mặt phẳng giới hạn bởi đồ thị hàm số y f x , trục Ox và hai đường b thẳng x a; x b là S f x dx a Chú ý đến dấu của f x khi phá dấu giá trị tuyệt đối. Nếu đồ thị nằm dưới Ox thì f x 0 , nếu đồ thị nằm trên Ox thì f x 0 . Cách giải Trên 2;1 thì đồ thị nằm phía dưới Ox nên f x 0 , trên khoảng 1;2 thì đồ thị nằm trên Ox nên f x 0 Nên từ hình vẽ ta có diện tích phần được tô đậm là 1 2 1 2 S f x dx f x dx f x dx f x dx a b b a . 2 1 2 1 Câu 15. Chọn đáp án C Phương pháp Quan sát đồ thị hàm số, nhận xét dáng điệu, điểm đi qua và kết luận. Cách giải Quan sát đồ thị ta thấy đây là đồ thị hàm bậc ba có hệ số a 0 nên loại A, B. Đồ thị hàm số đi qua điểm 1;3 nên thay tọa độ điểm 1;3 vào hai hàm số C và D ta thấy chỉ có C thỏa mãn. Câu 16. Chọn đáp án C Phương pháp Sử dụng phương pháp đổi biến số x2 1 t để tìm tích phân. Cách giải Trang 10/26
  11. t xdx tdt dx dt Đặt x2 1 t x2 1 t 2 2 2 x x t 1 2 2 x t 1 Đổi cận: Với x 1 t 2; x 2 t 5 2 2 x3dx 5 x3 t 5 x2.t 5 t 1 .t 5 t 1 t 1 .t Do đó dt dt dt dt 2 1 x 1 1 2 t 1 x 2 t 1 2 t 1 2 t 1 5 5 t3 t 2 5 5 2 2 5 2 3 t 2 t dt 5 1 3 2 2 3 2 2 3 2 3 3 3 2 5 2 3 5 nên a ;b ;c P a b c . 3 3 2 2 Câu 17. Chọn đáp án A Phương pháp - Tính y ' và tìm nghiệm của y ' 0 trên đoạn  3;3 . - Tính giá trị của hàm số tại hai điểm 3,3 và các điểm là nghiệm của đạo hàm ở trên. - So sánh kết quả và kết luận. Cách giải x 1  3;3 Ta có: y ' 6x2 6x 12 0 x 2  3;3 Lại có: y 3 35, y 1 17, y 2 10, y 3 1 . Do đó giá trị lớn nhất của hàm số trên  3;3 là M 17 và giá trị nhỏ nhất của hàm số trên  3;3 là m 35; Vậy T M m 17 35 18 . Câu 18. Chọn đáp án D Phương pháp Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số. Hàm số liên tục trên a;b có y ' 0 với x a;b thì hàm số đồng biến trên a;b . Cách giải Từ BBT ta có hàm số đồng biến trên các khoảng ; 1 và 0;1 . Câu 19. Chọn đáp án C Phương pháp Nhân cả thử và mẫu với biểu thức liên hợp của tử, tìm nghiệm của mẫu thức và tính giới hạn của hàm số tại các nghiệm đó. Cách giải x 7 3 x 7 3 x 7 3 x 2 1 Ta có: y x2 2x x2 2x x 7 3 x x 2 x 7 3 x x 7 3 1 lim y lim nên đồ thị hàm số có duy nhất một đường tiệm cận đứng x 0 . x 0 x 0 x x 7 3 Trang 11/26
  12. Câu 20. Chọn đáp án A Phương pháp Mặt phẳng P : ax by cz d 0 có một vectơ pháp tuyến là n a;b;c Cách giải Mặt phẳng P : 2x y z 4 0 có một VTPT là n 2; 1;1 Câu 21. Chọn đáp án C Phương pháp n Sử dụng các công thức lũy thừa thu gọn biểu thức dưới dấu logarit và sử dụng công thức loga a n . Cách giải 1 13 3 4 3 4 4 13 Ta có: S loga a a loga a .a loga a . 4 Câu 22. Chọn đáp án D Phương pháp Sử dụng công thức tính thể tích khối trụ có chiều cao h và bán kính đáy r là V r 2.h . Cách giải Thể tích khối trụ đã cho là V r 2h .32.2 18 . Câu 23. Chọn đáp án A Phương pháp ax b a Đồ thị hàm số y với ad bc 0 có đường tiệm cận ngang là y . cx d c Cách giải x 1 1 Đồ thị hàm số y có đường tiệm cận ngang là đường thẳng y . 4x 1 4 Câu 24. Chọn đáp án C Phương pháp Hàm số y f x có TXĐ D ¡ đồng biến trên ¡ f ' x 0;x ¡ và dấu “=” chỉ xảy ra tại hữu hạn điểm. Cách giải 2x TXĐ: D ¡ . Ta có y ' m x2 1 Để hàm số đồng biến trên ¡ thì y ' 0 với x ¡ . 2x 2x Hay m 0 m g x với x ¡ . x2 1 x2 1 2x 2x2 2 x 1 Suy ra m min g x với g x 2 , xét g ' x 2 0 ¡ x 1 x2 1 x 1 BBT của g x . x 1 1 g ' x + g x 0 1 Trang 12/26
  13. 1 0 Từ BBT suy ra min g x 1 x 1 Nên m 1 thì hàm số y ln x2 1 mx 1 đồng biến trên ¡ . Câu 25. Chọn đáp án C Phương pháp    Mặt phẳng P vuông góc với cả hai mặt phẳng Q , R nên n n ,n . P Q R Mặt phẳng P đi qua điểm M x0 ; y0 ; z0 và nhận n a;b;c làm VTPT thì P : a x x0 b y y0 c z z0 0 . Cách giải    Mặt phẳng P vuông góc với cả hai mặt phẳng Q , R nên n n ,n . P Q R     Có n 1;1;3 và n 2; 1;1 nên n ,n 4;5; 3 . Q R Q R Vậy P : 4 x 2 5 y 1 3 z 3 0 hay P : 4x 5y 3z 22 0 . Câu 26. Chọn đáp án D Phương pháp + Cho mặt cầu S có tâm I và bán kính R và mặt phẳng P cắt mặt cầu theo giao tuyến là đường tròn có bán kính r thì ta có mối liên hệ R2 h2 r 2 với h d I, P . Từ đó ta tính được R. 2 2 2 2 + Phương trình mặt cầu tâm I x0 ; y0 ; z0 và bán kính R có dạng x x0 y y0 z z0 R Cách giải 1 2.2 2. 1 2 9 + Ta có h d I, P 3 . 12 2 2 22 3 + Từ đề bài ta có bán kính đường tròn giao tuyến là r 5 nên bán kính mặt cầu là R r 2 h2 52 32 34 . + Phương trình mặt cầu tâm I 1;2; 1 và bán kính R 34 là x 1 2 y 2 2 z 1 2 34 . Câu 27. Chọn đáp án D Phương pháp Vectơ u xi y j zk thì u x; y; z . Cách giải Do a i 3 j 2k nên a 1;3; 2 . Câu 28. Chọn đáp án A Phương pháp Nhận thấy đây là hàm đa thức bậc ba nên ta thực hiện các bước sau: + Tìm y ' , giải phương trình y ' 0 ta tìm được nghiệm x0 . + Tìm y '' , nếu y '' x0 0 thì x0 là điểm cực tiểu của hàm số từ đó tính giá trị cực tiểu y x0 . Cách giải Trang 13/26
  14. 2 x 0 Ta có y ' 3x 6x 0 3x x 2 0 x 2 Lại có y '' 6x 6 y '' 0 6; y '' 2 6 0 nên x 2 là điểm cực tiểu của hàm số 3 2 Khi đó yCT y 2 2 3.2 4 . Chú ý: Các em cũng có thể lập BBT để tìm điểm cực tiểu. Câu 29. Chọn đáp án B Phương pháp b b b b b Sử dụng các tính chất tích phân f x g x dx f x dx g x dx và kf x dx k f x dx . a a a a a Cách giải 3 3 3 3 3 3 3 2 2 x 3 Ta có: L 2 f x x dx 2 f x dx x dx 2 f x dx 2.2 5 . 0 0 0 0 3 0 3 Câu 30. Chọn đáp án D Phương pháp Sử dụng công thức: Cho cấp số cộng có số hạng đầu u1 và công sai d thì số hạng thứ n n 1 là un u1 n 1 d . Từ đó ta tìm được công sai d. Cách giải Ta có u10 u1 9d 3 9d 24 9d 27 d 3 . Câu 31. Chọn đáp án C Phương pháp Coi phương trình đã cho là bậc hai ẩn 2x , giải phương trình tìm x và kết luận. Cách giải 2x 2 x 1 Ta có: 22x 5.2x 6 0 2x 2 2x 3 0 x 2 3 x log2 3 Do đó P x1.x2 1.log2 3 log2 3 . Câu 32. Chọn đáp án C Phương pháp Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp. Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều. Cách giải Gọi O là tâm hình vuông ABCD và E là trung điểm SB. Vì S.ABCD là hình chóp đều nên SO  ABCD . Trong SBO kẻ đường trung trực của SB cắt SO tại I, khi đó IA IB IC ID IS nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là R IS . Trang 14/26
  15. Ta có ABCD là hình vuông cạnh 2 BD BD BC 2 CD2 2 2 BO 2 . 2 3 2 Ta có SA SB SC SD 3 2 (vì S.ABCD là hình chóp đều) nên SE EB 2 Xét tam giác SBO vuông tại O (vì SO  ABCD SO  OB ) có SO SB2 OB2 18 2 4 . 3 2 3 2. SI SE SB.SE 9 Ta có SEI đồng dạng với tam giác SOB (g-g) IS 2 . SB SO SO 4 4 9 Vậy bán kính R . 4 Chú ý: Các em có thể sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp đều có cạnh a2 bên là a và chiều cao h là R . 2h Câu 33. Chọn đáp án D Phương pháp 1 Tính diện tích đáy rồi tính thể tích theo công thức V Bh . 3 Cách giải 1 1 a3 6 Diện tích đáy S a2 V S .SA .a2.a 6 . ABCD S.ABCD 3 ABCD 3 3 Câu 34. Chọn đáp án B Phương pháp Sử dụng các kiến thức sau: d  a,d  b +) a,b  P d  P a b +) d  P thì d vuông góc với mọi đường thẳng nằm trong P . Từ đó tìm ra khẳng định sai. Cách giải Ta có SA  ABC SA  BC nên A đúng. BC  SA Lại có BC  SAB BC  AH BC  AB AH  SC Mà AH  SB AH  SBC hay C, D đúng. AH  BC Từ đó B sai. Câu 35. Chọn đáp án B Phương pháp Số các số lập được chính là số hoán vị của 4. Cách giải Mỗi số lập được thỏa mãn bài toán là một hoán vị của 4 chữ số 1; 5; 6; 7. Trang 15/26
  16. Số các số có bốn chữ số đôi một khác nhau lập được từ 4 chữ số 1; 5; 6; 7 là P4 4! 24 số. Câu 36. Chọn đáp án C Phương pháp a Hàm số y f x với a là phân số (không là số nguyên) hoặc số vô tỉ thì có điều kiện f x 0 . Cách giải 1 Do ¢ nên hàm số xác định 4 x 0 x 4 5 Vậy TXĐ của hàm số là D ;4 . Câu 37. Chọn đáp án C Phương pháp x Giải bất phương trình bằng cách đưa về bất phương trình bậc hai, ẩn là log5 5 1 . Cách giải Điều kiện: 5x 1 0 x 0 Ta có: 1 x x 1 x x log5 5 1 .log25 5 5 1 log5 5 1 . log5 5 5 1 1 2 log 5x 1 . 1 log 5x 1 2 0 5 5 2 x x log5 5 1 log5 5 1 2 0 log 5x 1 1 log 5x 1 2 0 5 5 x 2 x 1 1 x 2 log5 5 1 1 5 5 1 5 5 1 5 25 26 26 5x 6 log x log 6 25 5 25 5 26 26 Do đó tập nghiệm của bất phương trình là log5 ;log5 6 a log5 ;b log5 6 25 25 26 156 a b log log 6 log log 156 log 25 log 156 2 5 25 5 5 25 5 5 5 Câu 38. Chọn đáp án A Phương pháp n Sử dụng công thức lãi kép A A0 1 r với r là lãi suất, A0 là số tiền ban đầu, A là số tiền thu được sau n kì hạn. Cách giải Số tiền cả gốc và lãi người đó nhận được sau khi gửi 100 triệu trong 6 tháng đầu là 100 1 2% 2triệu đồng. Sau 6 tháng người đó gửi thêm 100 triệu đồng nên số tiền gốc lúc này là 100 100 1 0,02 2 Sau 6 tháng còn lại, thì người đó nhận được tổng số tiền là T 100 100 1 0,02 2 1 0,02 2 212,28 triệu đồng. Câu 39. Chọn đáp án C Trang 16/26
  17. Phương pháp Tiếp tuyến với đồ thị hàm số y f x tại điểm có hoành độ x0 có phương trình y f ' x0 x x0 f x0 . Cách giải Ta có: y ' 3x2 6x y ' 3 9 . Tại x 3 thì y 2 . Vậy phương trình tiếp tuyến: y 9 x 3 2 9x 25 . Câu 40. Chọn đáp án B Phương pháp c b b Sử dụng công thức f x dx f x dx f x dx a c a Cách giải 3 2 3 Ta có f x dx f x dx f x dx 1 2 1 . 1 1 2 Câu 41. Chọn đáp án A Phương pháp Sử dụng lý thuyết: Góc giữa hai đường thẳng chéo nhau a, b bằng góc giữa đường thẳng a với mặt phẳng P chứa b mà song song với a. Cách giải Gọi N là trung điểm của BC thì AB / /M N suy ra d AB, SM d AB, SMN d A, SMN Gọi E là hình chiếu của A lên MN ME  AE , mà ME  SA NE  SAE . Gọi F là hình chiếu của A lên SE AF  SE . Mà EN  SAE NE  AF . Do đó AF  SEN hay d A, SMN d A, SEN AF . 1 1 1 1 1 13 12a2 2a 39 Tam giác SAE vuông tại A có AF 2 AF AF 2 AS 2 AE 2 12a2 a2 12a2 13 13 2a 39 Vậy d AB, SM . 13 Câu 42. Chọn đáp án B Phương pháp   - Ta xác định điểm H x; y; z sao cho 2.HA HB 0 - Từ đó biến đổi để có 2MA2 MB2 lớn nhất khi MH lớn nhất. - MHmax HI R với I, R là tâm và bán kính mặt cầu S . Cách giải   Ta xác định điểm H x; y; z sao cho 2.HA HB 0   HA 1 x;2 y; 3 z ; HB 5 x;2 y;3 z nên Trang 17/26
  18.   2HA HB 0 2 2x;4 2y; 6 2z 5 x;2 y;3 z 0 2 2x 5 x 0 x 1 4 2y 2 y 0 y 2 H 1;2; 1 6 2z 3 z 0 z 1 Ta có  2  2   2   2 2MA2 MB2 2MA MB 2. MH HA MH HB     2. MH 2 2MH.HA HA2 MH 2 2.MH.HB HB2    3MH 2 2HA2 HB2 2MH 2HA HB   3MH 2 2HA2 HB2 (Do 2.HA HB 0 )   Ta có HA 2;0; 2 ; HB 4;0;4 HA2 8; HB2 32 nên 2MA2 MB2 3MH 2 2.8 32 3MH 2 48 Từ đó 2MA2 MB2 lớn nhất khi MH 2 lớn nhất hay MH lớn nhất. Mặt cầu S có tâm I 3;1;1 , bán kính R 2 . Ta có MHmax HI R 4 1 4 2 5 . Như vậy 2MA2 MB2 đạt GTLN là 3MH 2 48 3.25 48 123 . Câu 43. Chọn đáp án C Phương pháp - Lập hệ bất phương trình ẩn x, y dựa vào điều kiện đề bài. - Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ. - Tìm x, y để biểu thức tính số điểm M x; y đạt GTLN (tại một trong các điểm mút). Cách giải Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế (x 0; y 0 ). Để pha chế x lít nước cam thì cần 30x g đường, x lít nước và x g hương liệu. Để pha chế y lít nước táo thì cần 10y g đường, y lít nước và 4y g hương liệu. 30x 10y 210 x y 9 Theo bài ra ta có hệ bất phương trình: (*) x 4y 24 x 0, y 0 Số điểm đạt được khi pha x lít nước cam và y lít nước táo là: M x; y 60x 80y . Bài toán trở thành tìm x, t thỏa để M x; y đạt GTLN. Ta biểu diễn miền nghiệm của (*) trên mặt phẳng tọa độ như sau: Miền nghiệm là ngũ giác ACJIH Tọa độ các giao điểm A 4;5 ,C 6;3 , J 7;0 , I 0;0 , H 0;6 . Trang 18/26
  19. M x; y sẽ đạt max, min tại các điểm đầu mút nên thay tọa độ từng giao điểm vào tính M x; y ta được: M 4;5 640 ; M 6;3 600, M 7;0 420, M 0;0 0, M 0;6 480 Vậy max M x; y 640 khi x 4; y 5 T 2x2 y2 57 Câu 44. Chọn đáp án B Phương pháp + Từ giả thiết ta viết được phương trình đường tròn và phương trình parabol + S1 là phần diện tích giới hạn bởi parabol; đường tròn và hai đường thẳng x 2; x 2 . Từ đó sử dụng công thức diện tích hình phẳng bằng ứng dụng tích phân để tính S1 . Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y f x ; y g x và hai đường thẳng x a; x b b là S f x g x dx a + Từ đó tính S1;S2 ;S3;S4 và tính tiền trồng bồn hoa. Cách giải Vì ABCD là hình vuông cạnh 4 nên BD BC 2 CD2 4 2 OB 2 2 và A 2;2 ; B 2;2 . Phương trình đường tròn tâm O bán kính r 2 2 là x2 y2 8 y 8 x2 Parabol đi qua hai điểm A 2;2 , B 2;2 và có đỉnh O 0;0 có dạng y ax2 (a 0 ) 1 1 Khi đó 2 a.22 a y x2 P 2 2 2 Từ đồ thị ta có S1 là giới hạn của hai đồ thị hàm số y 8 x và 1 y x2 và hai đường thẳng x 2; x 2 . 2 2 2 1 2 1 8 Nên ta có S 8 x2 x2 dx 8 x2 dx x3 I 1 2 2 2 6 2 3 2 Xét I 8 x2 dx , đặt x 2 2 sin t dx 2 2 costdt 2 Đổi biến số x 2 t ; x 2 t 4 4 4 4 4 2 2 4 Từ đó I 8 8sin t.2 2 costdt 8cos tdt 4 1 cos 2t dt 4t 2sin 2t 2 4 4 4 4 4 8 8 4 Nên S I 2 4 2 1 3 3 3 Trang 19/26
  20. Lại thấy S1 S2 ;S3 S4 (vì hai parabol đối xứng nhau qua đỉnh O), diện tích cả bốn hoa là 2 S r 2 2 2 8 . 8 2 Từ đó diện tích trồng hoa là S1 S2 2S1 4 m 3 8 2 Diện tích trồng cỏ là S3 S4 S S1 S2 4 m 3 8 8 Nên tổng số tiền trồng bồn hoa là 4 .150000 4 .100000 3274926 đồng. 3 3 Câu 45. Chọn đáp án D Phương pháp f ' x - Từ điều kiện f x f ' x 3x 1 rút ra và lấy nguyên hàm hai vế, kết hợp với f 1 1tìm f x f x . - Tính f 5 và kết luận. Cách giải f ' x 1 Ta có: f x f ' x 3x 1 f x 3x 1 Lấy nguyên hàm hai vế ta được: 1 f ' x 1 d f x dx dx 3x 1 2 dx f x 3x 1 f x 2 2 3x 1 C ln f x 3x 1 C f x e 3 3 2 2 4 3.1 1 C 4 4 3x 1 Do f 1 1 nên e 3 1 C 0 C hay f x e 3 3 3 3 2 4 4 3.5 1 Do đó f 5 e 3 3 e 3 3,79 . Vậy 3 f 5 4 . Câu 46. Chọn đáp án D Phương pháp Nhận xét rằng: Đa giác đều có số đỉnh chẵn luôn tồn tại đường kính của đường tròn ngoại tiếp đa giác là đoạn nối hai đỉnh của đa giác. Nên ta chia đường tròn ngoại tiếp đa giác đều đó thành hai nửa đường tròn và dựa vào tính đối xứng của các đỉnh để tạo thành một hình chữ nhật. Tính số hình vuông trong các hình chữ nhật đó để tính xác suất 4 đỉnh tạo thành hình chữ nhật mà không phải hình vuông. Cách giải 4 Số phần tử của không gian mẫu n  C24 Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó hai nửa đường tròn đều chứa 12 đỉnh. Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có một đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại. Trang 20/26
  21. Như vậy cứ hai đỉnh thuộc nửa đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành một hình chữ nhật. 2 Vậy số hình chữ nhật có 4 đỉnh là các đỉnh của đa giác đã cho là C12 . Nhận thấy rằng trong số các hình chữ nhật tạo thành có 24 : 4 6 hình vuông (vì hình chữ nhật có các cạnh bằng nhau là hình vuông) 2 Nên số hình chữ nhật mà không phải hình vuông là C12 6 . 2 C12 6 10 Xác suất cần tìm là P 4 . C24 1771 Câu 47. Chọn đáp án D Phương pháp - Chia khối đa diện ABCSFH thành hai khối chóp A.BCHF và S.BCHF rồi tính thể tích. Cách giải Gọi I là hình chiếu của A lên BH. Khi đó S đối xứng với A qua BH hay S đối xứng với A qua I. Chia khối đa diện ABCSFH thành hai khối chóp A.BCHF và S.BCHF thì ta có VABCHFS VA.BCHF VS.BCHF Lại có SI AI và SA BCHF tại I nên d A; BCHF d S, BCHF . Suy ra VA.BCHF VS.BCHF VABCHFS 2VA.BCHF 1 2 Dễ thấy V V V V V V A.BCHF ABC.EFH A.EFH ABC.EFH 3 ABC.EFH 3 ABC.EFH a2 3 a3 3 Mà V AE.S a. nên ABC.EFH ABC 4 4 2 2 a3 3 a3 3 V V . A.BCHF 3 ABC.EFH 3 4 6 a3 3 a3 3 V 2V 2. . ABCHFS A.BCHF 6 3 a3 3 Vậy V . ABCHFS 3 Câu 48. Chọn đáp án B Phương pháp Sử dụng công thức tính diện tích toàn phần hình hộp và công thức tính thể tích hình hộp V abc (với a, b, c là ba kích thước của hình chữ nhật) Sử dụng các dữ kiện đề bài và sử dụng hàm số để tính giá trị lớn nhất của thể tích. Cách giải Gọi chiều dài, chiều rộng và chiều cao của bể cá lần lượt là a;b;c a,b,c 0 Theo đề bài ta có a 2b . Trang 21/26
  22. Vì ông A sử dụng 5m2 kính để làm bể cá không nắp nên diện tích toàn phần (bỏ 1 mặt đáy) của hình hộp là 5m2 . Hay ab 2bc 2ac 5 mà a 2b nên 5 2b2 2b2 2bc 4bc 5 2b2 6bc 5 c 6b 5 2b2 2b3 5b2 Thể tích bể cá là V abc 2b.b. 6b 3 3 2 2 b 0 ktm 2b 5b 6b 10b Xét hàm số f b b 0 f ' b 0 5 (vì b 0 ) 3 3 b tm 3 Ta có BBT của y f b . b 0 5/3 f ' b + 0 f b 125/81 0 125 5 Từ BBT suy ra max f b b 81 3 Câu 49. Chọn đáp án D Phương pháp Biến đổi phương trình đã cho về dạng f u f v rồi sử dụng phương pháp hàm số. Cách giải Ta có: 3 3 x9 3x3 9x m 33 9x m x9 3x3 9x m 33 9x m x3 3x3 3 9x m 33 9x m Xét hàm g t t3 3t g ' t 3t 2 3 0,t nên hàm số g t đồng biến trên ¡ . Suy ra g x3 g 3 9x m x3 3 9x m x9 9x m x9 9x m . Xét hàm f x x9 9x trên ¡ có f ' x 9x8 9 0 x 1 . Bảng biến thiên: x 1 1 f ' x + 0 0 + f x 8 8 m 8 Từ bảng biến thiên ta thấy, phương trình đã cho có đúng hai nghiệm . m 8 Vậy S  8;8 hay tổng các phần tử của S bằng 0. Câu 50. Chọn đáp án C Phương pháp Trang 22/26
  23. Biến đổi giả thiết để tìm mối liên hệ của x theo y. Thay vào biểu thức P rồi sử dụng phương pháp hàm số để tìm giá trị nhỏ nhất của P. Cách giải Ta có log4 x y log4 x y . ĐK x y; x y x 0; x y . 2 2 2 2 2 2 2 Suy ra log4 x y 1 x y 4 x y 4 x y 4 (vì x 0 ) Lại có P 2x y 2 y2 4 y 2 y2 4 y Đặt t y 0 2 t tm t 3 Xét f t 2 t 2 4 t có f ' t 2 1 0 2t t 2 4 3t 2 4 t 2 4 2 t ktm 3 BBT của f t trên 0; 2 t 0 3 f ' 0 + f 4 2 3 2 Từ BBT suy ra min f t 2 3 t 3 Suy ra P 2 3 hay GTNN của P là 2 3 4 2 x ; y 3 3 2 2 x ; y 3 3 Trang 23/26