Đề thi thử Tốt nghiệp THPT môn Toán - Năm học 2019-2020 - Trường THPT Bình Minh (Có đáp án)

doc 10 trang thaodu 3970
Bạn đang xem tài liệu "Đề thi thử Tốt nghiệp THPT môn Toán - Năm học 2019-2020 - Trường THPT Bình Minh (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_thu_tot_nghiep_thpt_mon_toan_nam_hoc_2019_2020_truong.doc

Nội dung text: Đề thi thử Tốt nghiệp THPT môn Toán - Năm học 2019-2020 - Trường THPT Bình Minh (Có đáp án)

  1. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 SỞ GDĐT NINH BÌNH ĐỀ THI THỬ TN THPT NĂM HỌC 2019 - 2020 TRƯỜNG THPT BÌNH MINH (Đề gồm 06 trang) MÔN: TOÁN Thời gian: 90 phút Họ và tên: SBD: Câu1.Từ các chữ số 1,2,3,4 , lập được bao nhiêu số có 4 chữ số khác nhau? A. 24 B. 256 C. 4 D. 12 Câu2.Cho cấp số cộng un với u1 3 và công sai d 3 . Số hạng u3 của cấp số cộng đã cho bằng A. 27. B. 3. C. 9. D. 6. Câu3.Nghiệm của phương trình 4x 1 64 là A. x 4 . B. .x 3 C. . x 5 D. . x 15 Câu4.Thể tích của khối lập phương bằng 64 , cạnh của khối lập phương là A. .1 6 B. . 8 C. 4 . D. .2 Câu5.Tập xác định của hàm số y log3 (x 1) là A. . 1; B. 1; . C. . 0; D. . 0; Câu6.Cho hàm số f (x) 2x 1 . Họ nguyên hàm của hàm số f (x) là A. .x 2 x B. . 2xC.2 . x C D. 2x C x2 x C . Câu 7.Cho khối lăng trụ có diện tích đáy B 3 và chiều cao h 4 . Thể tích khối chóp đã cho bằng A. .6 B. 12. C. .3 6 D. . 4 Câu 8.Cho khối trụ có chiều cao h 4 và bán kính đáy r 6 . Thể tích khối nón đã cho bằng A. .4 8 B. . 32 C. 96 . D. .24 Câu9.Cho khối cầu có bán kính R 3 . Thể tích khối cầu đã cho bằng A. .3 6 B. . 9 C. . 27 D. 36 . Câu10.Cho hàm số f (x) có đồ thị như hình bên dưới Hàm số đã cho đồng biến trên khoảng nào ? A. 1; .B C 1;1 D 0;1 1;0 2 Câu11.Với a,b là số thực dương tùy ý, log2 a b bằng A. 2log2 a log2 b . B. .2 (lC.og 2. a log2 b)D. . 2 log2 b 2log2 (ab) Câu12.Diện tích xung quanh của hình nón có đường sinh l và bán kính đáy r bằng 1 A 2 rl B. rl . C. .D. .rl 4 rl 3 Câu13.Cho hàm số y f (x) có bảng biến thiên như sau Trang 1
  2. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 Hàm số đạt cực đại tại điểm x0 bằng A. 3 . B. 4 . C. 0 . D.1. Câu14.Đồ thị hàm số nào có dạng như dạng như đường cong trong hình vẽ bên dưới? A. y x2 3 . B.y x4 2x2 3 . C. y x4 2x2 3. D. y x4 2x2 3 . 3x 2 Câu15.Tiệm cận đứng của đồ thị hàm số y là x 1 A y 3 B. .C D. y 1 x 3 x 1. Câu 16.Tập nghiệm của bất phương trình 2x 4 là A (B.4; ) (2; ) .C D. . 2; ( ;2) Câu 17.Cho hàm số y f (x) có đồ thị như hình vẽ . Số nghiệm của phương trình 3 f x 2 0 là A. 0. B. 3. C. 2.D. 1. 2 2 Câu 18.Nếu f (x)dx 2 thì  f (x) 2dx bằng 1 1 A.5 . B. .4C D. . 2 8 Câu19.Môdun của số phức z 3 2i là A. 13 .B C D 5 1 5 Câu20.Cho hai số phức z1 1 2i vàz2 3 i . Phần ảo của số phức z1 z2 bằng A. .1 B. 3 . C. .4 D. . 2 Câu21.Trên mặt phẳng tọa độ, điểm biểu diễn số phức z 3 2i là điểm nào dưới đây? A MB.(.C. 2;3) N(3;2) P(3; 2) .D ( 3; 2) Trang 2
  3. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 Câu22.Trong không gian Oxyz , hình chiếu vuông góc của điểm M (3; 1,2) trên mặt phẳng (Oyz) có tọa độ là A (B.0;. C.1;0) (3;0;0) (0; 1;2) .D (0;0;2) Câu23.Trong không gian Oxyz , cho mặt cầu (S) : x2 y 2 z 2 2x 4y 4z 7 0 . Bán kính của S bằng A 7B C D. 2 7 4 . Câu24.Trong không gian Oxyz , cho mặt phẳng P : 2x 3y z 2 0 . Điểm nào dưới đây thuộc mặt phẳng P . A MB.(1;0;0) N(1;0; 4) . C P (1;1;0) D Q(2;3;1) x 1 y 2 z Câu 25. Trong không gian Oxyz , cho đường thẳng d : . Véc tơ nào dưới đây là véc 1 2 3 tơ chỉ phương của d A. (1; 2;3) .B C D (1; 2;0) ( 1;2;0) (1;2;3) Câu 26. Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng  ABCD ,SA a 6 ,ABCD là hình vuông cạnh a . Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng A. .3 0 B. . 45 C. 60 . D. .90 Câu27. Cho hàm số f x , biết f '(x) x(x 1)2 (x 2) Số điểm cực trị của hàm số đã cho là A 4B C.3 2 . D. .1 Câu 28. Giá trị lớn nhất của hàm số f (x) x3 3x 1 trên đoạn 0;2bằng A 4B C 1 D. 1 3 . Câu 29.Cho a 0, a 1,b 0,b 1 và x, y là hai số dương. Tìm mệnh đề đúng trong các mệnh đề sau: 1 1 A. logb x logb a.loga x . B loga x loga x x loga x C l oga x y lo g a x D. l.oga y loga y loga y Câu 30. Số giao điểm của đồ thị hàm số y x3 x 1 và đường thẳng y 2x 2 A. 3. B. .0 C. . 2 D. . 1 Câu31.Tập nghiệm của bất phương trình 4x 3.2x 1 8 0 là A B.1;2 1;2.C D. . ;1 1; Câu32.Trong không gian, cho hình chữ nhật ABCD vuông tại A, AB a vàBC 2a . Khi quay ABCD xung quanh cạnh AD thì đường gấp khúc ABCD tạo thành một hình trụ. Diện tích xung quanh của hình trụ đó bằng A. .5B. .aC.2 .D. a 2 2 a 2 4 a 2 . 10 10 Câu33.Xét x x2 1 , nếu đặt u x2 1 thì x x2 1 bằng 5 5 Trang 3
  4. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 1 10 3 1 3 1 9 A B C u du D. 2 udu udu udu . 2 5 2 2 2 2 4 Câu34.Gọi S của hình phẳng giới hạn bởi các đường y x2 1, y 0 , x 0 và x 1 , khi quay S quanh trục Ox ta được khối tròn xoay được tính bởi công thức nào dưới đây? 1 1 2 A S (x2 1)dx B. S x2 1 dx . 0 0 1 1 C SD. . (x2 1)2dx S (x2 1)dx 0 0 Câu35.Tìm số phức liên hợp của số phức z biết : 2z 2 3i 1 2i 4 5i 5 5 5 A. z 1 i B. z 1 i C. z 1 i D. z 2 3i 2 2 2 2 Câu36.Gọi z1, z2 là 2 nghiệm phức của phương trình z 6z 10 0 . Tính giá trị của biểu thức 2 2 P z1 z2 A. 20 .B C D 2 10 10 16 Câu37.Trong không gian Oxyz , cho điểm ba điểm A( 2;0;0), B(0;1;0),C(0;0;3) . Mặt phẳng đi qua A, B,C có phương trình là A. .3B.x 6y 2z 6 0 3x 6y 2z 6 0 .C. .3D.x . 6y 2z 6 0 3x y z 7 0 Câu38.Trong không gian Oxyz , cho hai điểm M (2;1; 1) vàN(1; 1;0) . Đường thẳng MN có phương trình tham số là x 2 t x 2 t x 2 t x 2 t A y 1 2t B. y 1 2t . C. . y 1 2D.t . y 1 2t z 1 t z 1 t z 1 t z 1 t Câu39. Một cái hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi có kích thước như nhau; n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong 3 viên bi lấy 9 được có đủ 3 màu là . Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. 28 9 31 5 25 A. P . B. P . C P D P 14 56 14 56 Câu 40. Cho hình chóp S.ABC có mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d từ A đến mặt phẳng (SBC), biết BC a 3, AC 2a . a 6 a 2 a 3 A. d a 3 . B. d . C. .d D. d . 2 2 2 1 Câu 41. Có bao nhiêu giá trị nguyên dương của m hàm số f x x3 mx2 5m 6 x 1 đồng biến 3 trên ¡ . A. 6.B. 7.C. 8.D. 5. Trang 4
  5. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 Câu42. Sự tăng trưởng của một loài vi khuẩn tuân theo công thức N A.ert , trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng r 0 và t là thời gian tăng trưởng. Biết số lượng vi khuẩn ban đầu có 250 con và sau 12 giờ là 1500 con. Hỏi sau bao lâu thì số lượng vi khuẩn tăng gấp 216 lần số lượng vi khuẩn ban đầu? A. 36 giờ B. 24 giờ C. 60 giờ D. 48 giờ Câu43. Giả sử hàm số y ax4 bx2 c có đồ thị là hình bên dưới. Khẳng định nào sau đây đúng? y 2 1 x -2 -1 1 2 -1 -2 A. a 0,b 0,c 1. B. a 0,b 0,c 1. C. a 0,b 0,c 1. D. a 0,b 0,c 0. Câu 44.Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 300 . Khoảng cách giữa AB và trục của hình trụ bằng R 3 R 3 A. R 3. B. . C. . D. R. 2 4 2 2 Câu45. Cho hàm số y f x liên tục trên 0;4 biết f x dx 2 và f 2x dx 4 . Tính 0 1 4 I f x dx . 0 A. .I 6 B. .I 6 C. .I 10 D. I 10 . Câu 46. Cho hàm số y f x xác định trên ¡ và có đồ thị như hình bên dưới. Có bao nhiêu giá trị nguyên của tham số m để phương trình: f 4 2sin2 2x m có nghiệm. Trang 5
  6. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 A. 2. B. 4 . C. 3 . D. 5. 2 Câu 47. Xét các số thực dương x, y thỏa mãn log 1 x log 1 y log 1 x y . Tìm giá trị nhỏ nhất Pmin 2 2 2 của biểu thức P x 3y . 17 25 2 A. P . B. P 9. C. P . D. P 8. min 2 min min 4 min 1 4 3 3 2 2 2 Câu48. Cho hàm số f (x) x mx (m 1)x (1 m )x 2019 với m là tham số thực; Biết 4 2 rằng hàm số y f x có số điểm cực trị lớn hơn 5 khi a m2 b 2 c (a,b,c R). Giá trị T a b c bằng A. 8 B. 5. C. 6. D. 7. Câu49. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M ,N lần lượt là trung điểm của BC,SC. Mặt phẳng (AMN ) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối V đa diện chứa B có thể tích là V . Gọi V là thể tích khối chóp S.ABCD , tính tỷ số 1 . 1 V V 13 V 11 V 17 V 7 A. 1 = . B. 1 = . C. 1 = . D. 1 = . V 24 V 24 V 24 V 12 1 Câu50.Cho hai hàm số f (x) x3 (m 1)x2 (3m2 4m 5)x 2019 và 3 g(x) (m2 2m 5)x3 (2m2 4m 9)x2 3x 2 ( với m là tham số) . Hỏi phương trình g( f (x)) 0 có bao nhiêu nghiệm ? A. 9. B. 0.C. 3. D. 1. Hết Trang 6
  7. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 BẢNG ĐÁP ÁN 1.A 2.C 3.A 4.C 5.B 6.D 7.B 8.C 9.D 10.A 11.A 12.B 13.B 14.C 15.D 16.B 17.B 18.A 19.A 20.B 21.C 22.C 23.D 24.B 25.A 26.C 27.C 28.D 29.A 30.A 31.B 32.D 33.D 34.B 35.D 36.A 37.B 38.B 39.A 40.D 41.A 42.A 43.B 44.B 45.D 46.D 47.B 48.A 49.B 50.C ĐÁP ÁN CÁC CÂU VẬN DỤNG CAO Câu 39. Một cái hộp có chứa 3 viên bi đỏ, 2 viên bi xanh và n viên bi vàng (các viên bi có kích thước như nhau; n là số nguyên dương). Lấy ngẫu nhiên 3 viên bi từ hộp. Biết xác suất để trong 3 viên bi lấy 9 được có đủ 3 màu là . Tính xác suất P để trong 3 viên bi lấy được có ít nhất một viên bi xanh. 28 9 31 5 25 A. P . B. P . C P D P 14 56 14 56 Lời giải Chọn A Gọi A là biến cố ‘’lấy được ba viên bi đủ ba màu’’ , theo giả thiết ta có n(A) 9 2.3.n 9 3 n 3 n() 28 Cn 5 28 Gọi B là biến cố lấy ‘’ lấy được ít nhất một viên bi xanh’’ 20 5 9 n(B) C3 20 n(B) n(B) 6 56 14 14 Câu 40. Cho hình chóp S.ABC có mặt bên SAB là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d từ A đến mặt phẳng (SBC), biết BC a 3, AC 2a . a 6 a 2 a 3 A. d a 3 . B. d . C. .d D. d . 2 2 2 Chọn D Dễ thấy tam giác ABC vuông tại B BC  (SAB) (SAB)  (SBC) , kẻ AH  SB AH  (SBC) Vậy AH là khoảng cách từ A đến (SBC) , do AH là đường cao của tam giác đều ABC nên a 3 AH . 2 1 Câu 41. Có bao nhiêu giá trị nguyên dương của m hàm số f x x3 mx2 5m 6 x 1 đồng biến 3 trên ¡ . A. 6.B. 7.C. 8.D. 5. Trang 7
  8. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 Chọn A 1 Hàm số f x x3 mx2 (5m 6)x 1 có f ' x x2 2mx 5m 6 . 3 Hàm số đồng biến trên ¡ a 1 0 f ' x 0 x x2 2mx 5m 6 0 x 1 m 6  ¡  ¡ 2 . ' m 5m 6 0 Do m ¥ m 1;2;3;4;5;6 . Vậy có 6 giá trị nguyên dương của m . Câu42. Sự tăng trưởng của một loài vi khuẩn tuân theo công thức N A.ert , trong đó A là số lượng vi khuẩn ban đầu, r là tỉ lệ tăng trưởng r 0 và t là thời gian tăng trưởng. Biết số lượng vi khuẩn ban đầu có 250 con và sau 12 giờ là 1500 con. Hỏi sau bao lâu thì số lượng vi khuẩn tăng gấp 216 lần số lượng vi khuẩn ban đầu? A. 36 giờ B. 24 giờ C. 60 giờ D. 48 giờ Chọn A 1 Theo giả thiết 1500 250.e12r r ln 6 . Gọi t là thời gian để vi khuẩn tăng gấp 216 lần số 12 1 t t.ln 6 lượng ban đầu , suy ra 216.250 250.e12 216 612 t 36 . Câu 46. Cho hàm số y f x xác định trên ¡ và có đồ thị như hình bên dưới. Có bao nhiêu giá trị nguyên của tham số m để phương trình: f 4 2sin2 2x m có nghiệm. A. 2. B. 4 . C. 3 . D. 5. Lời giải Chọn D 2 é ù Đặt t = 4 - 2sin 2x Þ t Î ëê2;4ûú . Do đó phương trình f (4 - 2sin2 2x) = m có nghiệm Û phương trình f (t ) = m có nghiệm trên đoạn é ù ëê2;4ûú. Trang 8
  9. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 é ù Dựa vào đồ thị đã cho ta thấy: phương trình f (t ) = m có nghiệm t với t Î ëê2;4ûúÛ 1 £ m £ 5 . Vậy m Î {1;2;3;4;5} . 2 Câu 47. Xét các số thực dương x, y thỏa mãn log 1 x log 1 y log 1 x y . Tìm giá trị nhỏ nhất Pmin 2 2 2 của biểu thức P x 3y . 17 25 2 A. P . B. P 9. C. P . D. P 8. min 2 min min 4 min Chọn B y2 Giả thiết suy ra xy x y2 x(y 1) y2 x (y 1) y 1 y2 1 P 3y 4(y 1) 5 9 y 1 y 1 3 9 Vậy P 9 khi y , x . min 2 2 1 3 Câu48. Cho hàm số f (x) x4 mx3 (m2 1)x2 (1 m2 )x 2019 với m là tham số thực; Biết 4 2 rằng hàm số y f x có số điểm cực trị lớn hơn 5 khi a m2 b 2 c (a,b,c R). Giá trị T a b c bằng A. 8 B. 5. C. 6. D. 7. Chọn A Từ f(x) là hàm bậc 4 có nhiều nhất 3 cực trị , mà y f x có nhiều hơn 5 cực trị , suy ra y f x có đúng 6 cực trị , từ đó f(x) có đúng 3 cực trị dương , hay phương trình f '(x) g(x) 0 có ba nghiệm dương phân biệt g '(x) có hai nghiệm dương và gcd .gct 0, g(0) 0 2 2 g '(x) 0 x 2mx m 1 0 xcd m 1, xct m 1 Nhận xét xcd x1 0 m 1 , g(0) 0 m 1 2 gcd (m 1)(m 3) 0 m 3 2 gct (m 1)(m 2m 1) 0 m 1 2 Vậy 3 m 1 2 3 m2 3 2 2 a 3,b 3,c 2 1 Câu50.Cho hai hàm số f (x) x3 (m 1)x2 (3m2 4m 5)x 2019 và 3 g(x) (m2 2m 5)x3 (2m2 4m 9)x2 3x 2 ( với m là tham số) . Hỏi phương trình g( f (x)) 0 có bao nhiêu nghiệm ? A. 9. B. 0.C. 3. D. 1. Trang 9
  10. TRƯỜNG THPT BÌNH MINHĐỀ THI THỬ TỐT NGHIỆP THPT NĂM HỌC 2019-2020 Chọn C 2 2 Ta có g(x) (x 2) (m 2m 5)x x 1 0 luôn có ba ngiệm phân biệt vì phương trình 2 2 (m 2m 5)x x 1 0 luôn có hai nghiệm phân biệt x1, x2 khác 2 f (x) 2 (1) Vậy g( f (x)) 0 f (x) x (2) 1 f (x) x2 (3) Lại có f '(x) x2 2(m 1)x 3m2 4m 5 0 vô nghiệm nên các phương trình (1), (2), (3) có nghiệm duy nhất và các nghiệm này khác nhau , vậy g( f (x)) 0 có ba nghiệm. Trang 10