Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 - Sở giáo dục và đào tạo Đà Nẵng (Có đáp án)

doc 3 trang thaodu 25571
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 - Sở giáo dục và đào tạo Đà Nẵng (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2012_2013.doc

Nội dung text: Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2012-2013 - Sở giáo dục và đào tạo Đà Nẵng (Có đáp án)

  1. SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT TP.ĐÀ NẴNG Năm học: 2012 – 2013 MÔN: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài: 120 phút Bài 1: (2,0 điểm) 1) Giải phương trình:(x + 1)(x + 2) = 0 2x y 1 2) Giải hệ phương trình: x 2y 7 Bài 2: (1,0 điểm) Rút gọn biểu thức A ( 10 2) 3 5 y Bài 3: (1,5 điểm) y=ax2 Biết rằng đường cong trong hình vẽ bên là một parabol y = ax2. 1) Tìm hệ số a. 2) Gọi M và N là các giao điểm của đường thẳng y = x + 4 với parabol. Tìm tọa độ của các điểm M và N. 2 Bài 4: (2,0 điểm) x 0 Cho phương trình x2 – 2x – 3m2 = 0, với m là tham số. 1 2 1) Giải phương trình khi m = 1. 2) Tìm tất cả các giá trị của m để phương trình có hai nghiệm x1, x2 khác 0 và thỏa điều x x 8 kiện 1 2 . x2 x1 3 Bài 5: (3,5 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B (O), C (O’). Đường thẳng BO cắt (O) tại điểm thứ hai là D. 1) Chứ`ng minh rằng tứ giác CO’OB là một hình thang vuông. 2) Chứng minh rằng ba điểm A, C, D thẳng hàng. 3) Từ D kẻ tiếp tuyến DE với đường tròn (O’) (E là tiếp điểm). Chứng minh rằng DB = DE.
  2. BÀI GIẢI Bài 1: 1) (x + 1)(x + 2) = 0 x + 1 = 0 hay x + 2 = 0 x = -1 hay x = -2 2x y 1 (1) 5y 15 ((1) 2(2)) y 3 2) x 2y 7 (2) x 7 2y x 1 Bài 2: A ( 10 2) 3 5 = ( 5 1) 6 2 5 = ( 5 1) ( 5 1)2 = ( 5 1)( 5 1) = 4 Bài 3: 1) Theo đồ thị ta có y(2) = 2 2 = a.22 a = ½ 1 2) Phương trình hoành độ giao điểm của y = x2 và đường thẳng y = x + 4 là : 2 1 x + 4 = x2 x2 – 2x – 8 = 0 x = -2 hay x = 4 2 y(-2) = 2 ; y(4) = 8. Vậy tọa độ các điểm M và N là (-2 ; 2) và (4 ; 8). Bài 4: 1) Khi m = 1, phương trình thành : x2 – 2x – 3 = 0 x = -1 hay x = 3 (có dạng a–b + c = 0) x1 x2 8 2 2 2) Với x1, x2 0, ta có : 3(x1 x2 ) 8x1x2 3(x1 + x2)(x1 – x2) = 8x1x2 x2 x1 3 Ta có : a.c = -3m2 0 nên 0, m b c 2 Khi 0 ta có : x1 + x2 = 2 và x1.x2 = 3m 0 a a Điều kiện để phương trình có 2 nghiệm 0 mà m 0 > 0 và x1.x2 < 0 x1 < x2 2 Với a = 1 x1 = b' ' và x2 = b x' ' 1 – x2 = 2 ' 2 1 3m Do đó, ycbt 3(2)( 2 1 3m2 ) 8( 3m2 ) và m 0 1 3m2 2m2 (hiển nhiên m = 0 không là nghiệm) 4m4 – 3m2 – 1 = 0 m2 = 1 hay m2 = -1/4 (loại) m = 1 Bài 5: B C O A O’ E D
  3. 1) Theo tính chất của tiếp tuyến ta có OB, O’C vuông góc với BC tứ giác CO’OB là hình thang vuông. 2) Ta có góc ABC = góc BDC góc ABC + góc BCA = 900 góc BAC = 900 Mặt khác, ta có góc BAD = 900 (nội tiếp nửa đường tròn) Vậy ta có góc DAC = 1800 nên 3 điểm D, A, C thẳng hàng. 3) Theo hệ thức lượng trong tam giác vuông DBC ta có DB2 = DA.DC Mặt khác, theo hệ thức lượng trong đường tròn (chứng minh bằng tam giác đồng dạng) ta có DE2 = DA.DC DB = DE.