Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2019-2020 - Sở giáo dục và đào tạo Bắc Kạn
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2019-2020 - Sở giáo dục và đào tạo Bắc Kạn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2019_2020.doc
Nội dung text: Đề thi tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2019-2020 - Sở giáo dục và đào tạo Bắc Kạn
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT BẮC KẠN NĂM HỌC 2019 – 2020 MÔN THI: TOÁN ĐỀ CHÍNH THỨC Thời gian làm bài 120 phút, không kể thời gian giao đề ( Đề gồm 01 trang) Câu 1 (1,5 điểm) Rút gọn các biểu thức sau: a) A = 8 2 18 5 2 2 x x 4 x 4 b)B : với x 0; x 1; x 4 x x 2 x 2 x Câu 2 (1,5 điểm). Cho Parabol (P): y=-2x2 và đường thẳng (d): y=x-3. a) Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ Oxy. b) Viết phương trình đường thẳng (d1): y=ax+b sao cho (d1) song song với (d) và đi qua điểm A(-1;-2). Câu 3 (2,5 điểm). 3x y 7 a) Giải hệ phương trình x y 5 b) Giải phương trình x4-9x2+20=0 c) Cho tam giác vuông cạnh huyền là 13cm. Tính các cạnh góc vuông của tam giác, biết hai cạnh góc vuông hơn kém nhau 7cm. Câu 4 (1,5 điểm). Cho phương trình: x2-mx-3=0 (1) (với m là tham số) a. Giải phương trình (1) khi m=2 b. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1, x2. với mọi 2(x1 x2 ) 5 giá trị của m. Tìm giá trị lớn nhất của biểu thức: A 2 2 x1 x2 Câu 5 (3,0 điểm). Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh rằng các tứ giác CDHE, BCEF nội tiếp b) Hai đường thẳng qua EF và BC cắt nhau tại M. Chứng minh MB.MC=ME.MF. c) Đường thẳng qua B và song song với AC cắt AM, AH lần lượt tại I, K. Chứng minh rằng HI=HK Hết (Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm./.)
- LỜI GIẢI CÓ TẠI KÊNH: TCT968