Bộ đề kiểm tra chất lượng học kỳ II môn Toán Lớp 8 - Năm học 2015-2016 - Phòng giáo dục và đào tạo thành phố Thanh Hóa (Có đáp án)
Bạn đang xem tài liệu "Bộ đề kiểm tra chất lượng học kỳ II môn Toán Lớp 8 - Năm học 2015-2016 - Phòng giáo dục và đào tạo thành phố Thanh Hóa (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bo_de_kiem_tra_chat_luong_hoc_ky_ii_mon_toan_lop_8_nam_hoc_2.doc
Nội dung text: Bộ đề kiểm tra chất lượng học kỳ II môn Toán Lớp 8 - Năm học 2015-2016 - Phòng giáo dục và đào tạo thành phố Thanh Hóa (Có đáp án)
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II THÀNH PHỐ THANH HÓA NĂM HỌC 2015 - 2016 MÔN TOÁN LỚP 8 Thời gian: 90 phút (Không kể thời gian giao đề) ĐỀ LẺ Bài 1 (3,0 điểm) Giải các phương trình sau: 5 4 y 5 a) 3y – 6 = 0 ; b) 5y2 y = 0 ; c) y 3 y 3 y2 9 Bài 2 (1,5 điểm) Giải bất phương trình và phương trình sau: a ) 2y – 7 > 0 ; b) y 9 2y 3 Bài 3 (2,0 điểm ) Một người đi xe máy từ A đến B với vận tốc 40km/h. Sau khi đến B và nghỉ lại ở đó 30 phút, người đó lại đi từ B về A với vận tốc 30km/h. Tổng thời gian cả đi lẫn về là 9h15 phút (kể cả thời gian nghỉ lại ở B). Tính độ dài quãng đường AB. Bài 4 (3,0 điểm ) Cho tam giác ABC vuông ở A có đường cao AH. Đường phân giác BD cắt AH tại E. Chứng minh: a, Hai tam giác ABD và HBE đồng dạng b, AB2 = BH.BC EH AD c, EA DC a,b,c 0 Bài 5 (0,5 điểm ) Cho a b c 3 1 1 1 Tìm giá trị nhỏ nhất của biểu thức: B 1 a 1 b 1 c Hết
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II THÀNH PHỐ THANH HÓA NĂM HỌC 2015 - 2016 MÔN TOÁN LỚP 8 Thời gian: 90 phút (Không kể thời gian giao đề) ĐỀ CHẴN Bài 1 (3,0 điểm) Giải các phương trình sau: 5 4 x 5 c) 3x – 6 = 0 ; b) 5x2 x = 0 ; c) x 3 x 3 x2 9 Bài 2 (1,5 điểm) Giải bất phương trình và phương trình sau: a ) 2x – 7 > 0 ; b) x 9 2x 3 Bài 3 ( 2,0 điểm ) Một người lái ô tô đi từ A đến B với vận tốc 60km/h. Sau khi đến B và nghỉ lại ở đó 30 phút, ô tô lại đi từ B về A với vận tốc 40km/h. Tổng thời gian cả đi lẫn về là 8h15 phút (kể cả thời gian nghỉ lại ở B). Tính độ dài quãng đường AB. Bài 4 (3,0 điểm ) Cho tam giác ABC vuông ở B có đường cao BH. Đường phân giác AD cắt BH tại E Chứng minh: a) Hai tam giác ABD và AHE đồng dạng; b, AB2= AH.AC EH BD c, EB DC x, y, z 0 Bài 5 (0,5 điểm) Cho x y z 3 1 1 1 Tìm giá trị nhỏ nhất của biểu thức: A 1 x 1 y 1 z Hết
- HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ II NĂM HỌC 2015 -2016 MÔN : TOÁN - LỚP 8 (Thời gian 90 phút ) ĐỀ LẺ Bài/câu Hướng dẫn chấm Điểm 1.a 3y – 6 = 0 1,0đ 3y = 6 y = 2 0,75đ Vậy phương trình có nghiệm y = 2 0,25đ 5y2 + y = 0 y(5y + 1) = 0 y 0 5y 1 0 1.b y 0 0,75đ 1,0đ 1 y 5 1 Vậy phương trình có tập nghiệm S = ,0 0,25đ 5 5 4 y 5 ( điều kiện y ≠ 3 , y ≠ -3) y 3 y 3 y2 9 0,25đ 5(y 3) 4(y 3) y 5 1.c y2 9 y2 9 1,0đ 5y + 15 + 4y – 12 = y – 5 9y – y = 12 – 15 – 5 0,5đ 8y = –8 y = –1 ( thỏa mãn điều kiện) Vậy phương trình có nghiệm y = –1 0,25đ 2y – 7 > 0 2y > 7 2.a 7 0,5đ y > 0,75đ 2 7 Bất phương trình có nghiệm y > 0,25đ 2 b) + Với y 9 0 y 9, ta có: y 9 y 9 Khi đó pt đã cho trở thành: y 9 2y 3 2y y 9 3 0,25đ y 6 (không thỏa mãn) 2.b + Với y 9 0 y 9, ta có: y 9 y 9. 0,75đ Khi đó pt đã cho trở thành: y 9 2y 3 2y y 9 3 0,25đ 3y 12 y 4 (thỏa mãn) Vậy phương trình có một nghiệm duy nhất y = 4 0,25đ
- 1 37 Đổi: 30 phút giờ ; 9 giờ 15 phút giờ. 3 2 4 0,25đ 2,0đ Gọi độ dài quãng đường AB là x (km), x 0 . Vì người đó đi từ A đến B với vận tốc 40 km/h nên: Thời gian người đó đi từ A đến B hết x (giờ) 0,25đ 40 Vì người đó đi từ B về A với vận tốc 30 km/h nên: 0,25đ Thời gian người đó đi từ B về A hết x (giờ) 30 Vì tổng thời gian cả đi lẫn về là 9 giờ 15 phút (kể cả thời gian nghỉ lại ở B) nên, ta có phương trình: x x 1 37 x x 35 (*) 0,5đ 40 30 2 4 40 30 4 Giải phương trình (*) tìm được x 150 (thoả mãn điều 0,5đ kiện x 0 ) Vậy độ dài quãng đường AB là 150 km. 0,25đ Bài 4 3,0đ GT,KL, hình vẽ đúng B 0,5đ H 0,5đ E C A D Xét ∆ABD và ∆HBE có BAD = BHE = 900 (GT) 4.a 0,5đ 0,5đ ABD = HBE (vì BD là phân giác của tam giác ABC (GT)) ∆ABD ∆HBE (g.g ) 4.b Xét ∆HBA và ∆ABC và có BAC = BHA = 900(GT); B chung 0,5đ 1,0đ HB AB 2 0,5đ ∆HBA ∆ABC (g.g ) (1) AB BH.BC AB BC
- EH BH *Vì BE là phân giác của tam giác ABH nên : (2) EA AB AD AB *Vì BD là phân giác của tam giác ABC nên : (3) 4.c DC BC EH AD 1,0đ Từ (1), (2), (3) 1,0đ EA DC Bài 5 0,5đ Đặt : 1 + a = x 1+ b = y 1 + c = z Ta có : x + y + z = 3 + a + b + c mà a b c 3 1 1 x y z 6 . Ta sẽ chứng minh bài toán sau : x y z 6 0,25đ 1 1 1 1 1 1 x y z x y z x y z x y z 9 x y z x y z x y z x y z (1) . Thật vậy : Xét vế trái của BĐT (1) x x y y z z x y y z x z 1 1 1 3 y z x z x y y x z y z x x y z x Với x ; y; z là những số dương thì : 2 ; 2 ; y x x z y z 1 1 1 2 . Nên x y z 9 z y x y z Dấu “ = ” Xảy ra khi và chỉ khi : x = y =z . 0,25đ 1 1 1 9 3 3 . Vậy MinB = khi a = b = c = 1 x y z x y z 2 2 Lưu ý: - Bài hình không có hình vẽ hoặc hình vẽ sai không được chấm điểm - Học sinh giải cách khác đúng cho điểm tương đương
- HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KÌ II NĂM HỌC 2015 -2016 MÔN : TOÁN - LỚP 8 (Thời gian 90 phút ) ĐỀ CHẴN Bài/câu Hướng dẫn chấm Điểm 1.a 3x – 6 = 0 1,0đ 3x = 6 x = 2 0,75đ Vậy phương trình có nghiệm x = 2 0,25đ 5x2 + x = 0 x(5x + 1) = 0 x 0 5x 1 0 1.b x 0 0,75đ 1,0đ 1 x 5 1 Vậy phương trình có tập nghiệm S = ,0 0,25đ 5 5 4 x 5 ( điều kiện x ≠ 3 , x ≠ -3) x 3 x 3 x2 9 0,25đ 5(x 3) 4(x 3) x 5 1.c x2 9 x2 9 1,0đ 5x + 15 + 4x – 12 = x – 5 9x – x = 12 – 15 – 5 0,5đ 8x = –8 x = –1 ( thỏa mãn điều kiện) Vậy phương trình có nghiệm x = –1 0,25đ 2x – 7 > 0 2x > 7 0,5đ 2.a 7 x > 0,75đ 2 7 0,25đ Bất phương trình có nghiệm x > 2 b) + Với x 9 0 x 9, ta có: x 9 x 9 Khi đó pt đã cho trở thành: x 9 2x 3 2x x 9 3 x 6 (không thỏa mãn) 0,25đ 2.b 0,75đ + Với x 9 0 x 9, ta có: x 9 x 9. Khi đó pt đã cho trở thành: x 9 2x 3 2x x 9 3 3x 12 x 4 (thỏa mãn) 0,25đ Vậy phương trình có một nghiệm duy nhất x = 4 0,25đ
- 1 33 3 Đổi: 30 phút giờ ; 8 giờ 15 phút giờ. 2 4 0,25đ 2,0đ Gọi độ dài quãng đường AB là x (km), x 0 . Vì ô tô đi từ A đến B với vận tốc 60 km/h nên: Thời gian ô tô đi từ A đến B hết x (giờ) 0,25đ 60 Vì ô tô đi từ B về A với vận tốc 40 km/h nên: 0,25đ Thời gian ô tô đi từ B về A hết x (giờ) 40 Vì tổng thời gian cả đi lẫn về là 8 giờ 15 phút ( kể cả thời gian nghỉ lại ở B) nên, ta có phương trình: x x 1 33 x x 31 (*) 0,5đ 60 40 2 4 60 40 4 Giải phương trình (*) tìm được x 186 (thoả mãn điều 0,5đ kiện x 0 ) Vậy độ dài quãng đường AB là 186 km. 0,25đ Bài 4 3,0đ GT,KL, hình vẽ đúng 0,5đ Xét ∆ABD và ∆AHE có ABD = AHE = 900 (GT) 4.a BAD = HAE (vì AD là phân giác của tam giác ABC (GT)) 0,5đ 0,5đ ∆ABD ∆AHE (g.g ) Xét ∆HAB và ∆BAC có BHA = ABC = 900(gt); A chung 4.b 0,5đ AH AB 2 1,0đ ∆HAB ∆BAC (g.g ) (1) AB AH.AC 0,5đ AB AC
- EH AH Vì AE là phân giác của tam giác ABH nên : (2) EB AB BD AB Vì AD là phân giác của tam giác ABC nên : (3) 4.c DC AC 1,0đ EH BD Từ (1), (2), (3) BE DC Bài 5 0,5đ Đặt : 1 + x = a 1+ y = b 1 + z = c Ta có : a + b + c = 3 + x + y + z mà x y z 3 1 1 0,25đ a b c 6 . Ta sẽ chứng minh bài toán sau : a b c 6 1 1 1 a b c 9 (1) . Thật vậy : Xét vế trái của BĐT (1) a b c 1 1 1 a b c a b c a b c a b c a b c a b c = a a b b c c a b b c a c 1 1 1 3 b c a c a b b a c b c a a b c a Với x ; y; z là những số dương thì : 2 ; 2 ; b a a c b c 1 1 1 2 . Nên a b c 9 c b a b c Dấu “ = ” Xảy ra khi và chỉ khi : a = b = c . 1 1 1 9 3 3 . Vậy MinA = khi x = y = z = 1 0,25đ a b c a b c 2 2 Lưu ý: - Bài hình không có hình vẽ hoặc hình vẽ sai không được chấm điểm - Học sinh giải cách khác đúng cho điểm tương đương