Các dạng Toán Lớp 11 thường gặp: Cấp số cộng

docx 12 trang thaodu 6101
Bạn đang xem tài liệu "Các dạng Toán Lớp 11 thường gặp: Cấp số cộng", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxcac_dang_toan_lop_11_thuong_gap_cap_so_cong.docx

Nội dung text: Các dạng Toán Lớp 11 thường gặp: Cấp số cộng

  1. CÁC DẠNG TOÁN THƯỜNG GẶP TOÁN 11 CẤP SỐ CỘNG 1D3-3 MỤC LỤC PHẦN A. CÂU HỎI 1 DẠNG 1. NHẬN DIỆN CẤP SỐ CỘNG 1 DẠNG 2. TÌM CÔNG THỨC CẤP SỐ CỘNG 2 DẠNG 3. TÌM HẠNG TỬ TRONG CẤP SỐ CỘNG 3 DẠNG 4. TÍNH TỔNG VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN 5 DẠNG 5. BÀI TOÁN THỰC TẾ VÀ MỘT SỐ BÀI TOÁN KHÁC 7 PHẦN B. LỜI GIẢI THAM KHẢO 10 DẠNG 1. NHẬN DIỆN CẤP SỐ CỘNG 10 DẠNG 2. TÌM CÔNG THỨC CẤP SỐ CỘNG 11 DẠNG 3. TÌM HẠNG TỬ TRONG CẤP SỐ CỘNG 12 DẠNG 4. TÍNH TỔNG VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN 15 DẠNG 5. BÀI TOÁN THỰC TẾ VÀ MỘT SỐ BÀI TOÁN KHÁC 18 PHẦN A. CÂU HỎI DẠNG 1. NHẬN DIỆN CẤP SỐ CỘNG Câu 1. (Chuyên ĐBSH lần 1-2018-2019) Trong các dãy số sau, dãy số nào là một cấp số cộng? A. .1 ; 2; B.4; 6; 8 1; 3; C. 6 ; 9; 12. 1; 3; D. 7 .; 11; 15. 1; 3; 5; 7; 9 Câu 2. (ĐỀ KT NĂNG LỰC GV THUẬN THÀNH 1 BẮC NINH 2018-2019) Trong các dãy số sau, dãy số nào không phải cấp số cộng? 1 3 5 7 9 A. . ; ; ;B. ;. C.1 ;.1 ;1;1D.;1 . 8; 6; 4; 2;0 3;1; 1; 2; 4 2 2 2 2 2 Câu 3. Xác định đểa 3 số 1 2a;2a2 1; 2theoa thứ tự thành lập một cấp số cộng? 3 A. Không có giá trị nào của a . B. .a 4 3 C. .a 3 D. . a 2 Câu 4. Trong các dãy số sau đây, dãy số nào là cấp số cộng? 2 n n 1 A. .un 3n 2017 B. .un 3n 2018 C. .u n 3 D. . un 3 Câu 5. Dãy số nào sau đây là cấp số cộng? 1 A. . u :u B. . u :u u 2,n 2 n n n n n n 1 n C. . un :un 2 1 D. . un :un 2un 1,n 2 1
  2. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 6. Trong các dãy số sau đây, dãy số nào là một cấp số cộng? A. u n2 1, n 1 B. u 2n , n 1 C. u n 1,n 1 D. u 2n 3, n 1 n . n . n . n Câu 7. Trong các dãy số sau, dãy nào là cấp số cộng: 2 5n 2 A. .u 3n 1 B. . uC. . D. . u n2 1 u n n n 1 n n 3 Câu 8. Các dãy số có số hạng tổng quát un . Trong các dãy số sau, dãy số nào không phải là cấp số cộng? n 2 2 A. .u n 2n 5B. , , ,4 9 , 43 3 .C.7 . 31 25 D.u .n 1 3 un n 3 n Câu 9. Dãy số nào dưới đây là cấp số cộng? n * * A. un n 2 , n ¥ . B. un 3n 1, n ¥ . n * 3n 1 * C. un 3 , n ¥ . D. un , n ¥ . n 2 Câu 10. (THPT PHAN ĐÌNH PHÙNG - HÀ TĨNH - LẦN 1 - 2018) Tam giác ABC có ba cạnh ,a ,b 2 2 2 c thỏa mãn a , b , c theo thứ tự đó lập thành một cấp số cộng. Chọn khẳng định đúng trong các khẳng định sau A. tan2 A , tan2 B , tan2 C theo thứ tự đó lập thành một cấp số cộng. B. cot2 A, cot2 B , cot2 C theo thứ tự đó lập thành một cấp số cộng. C. cos A, cos B , cosC theo thứ tự đó lập thành một cấp số cộng. D. sin2 A , sin2 B , sin2 C theo thứ tự đó lập thành một cấp số cộng. DẠNG 2. TÌM CÔNG THỨC CẤP SỐ CỘNG Câu 11. (Mã 103 - BGD - 2019) Cho cấp số cộng un với u1 2và u2 .6 Công sai của cấp số cộng đã cho bằng A. .4 B. . 4 C. . 8 D. . 3 Câu 12. (Mã đề 104 - BGD - 2019) Cho cấp số cộng un với u1 và1 u2 .4 Công sai của cấp số cộng đã cho bằng A. .4 B. . 3 C. . 3 D. . 5 Câu 13. (Mã đề 101 - BGD - 2019) Cho cấp số cộng (u n) với u1 3 và u2 9 . Công sai của cấp số cộng đã cho bằng A. . 6 B. . 3 C. . 12 D. . 6 Câu 14. (Mã 102 - BGD - 2019) Cho cấp số cộng un với u1 2và u2 .8 Công sai của cấp số cộng đã cho bằng A. .1 0 B. . 6 C. . 4 D. . 6 2
  3. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 15. (THPT YÊN LẠC - LẦN 3 - 2018) Cho cấp số cộng un có u1 3 , u6 27 . Tính công sai d . A. .d 7 B. . d 5 C. . d D.8 . d 6 Câu 16. (THPT HÀ HUY TẬP - HÀ TĨNH - LẦN 1 - 2018) Cho cấp số cộng un có số hạng tổng quát là un 3n 2 . Tìm công sai d của cấp số cộng. A. .d 3 B. . d 2 C. . dD. . 2 d 3 Câu 17. Cho cấp số cộng un với u17 33 và u33 65 thì công sai bằng A. .1 B. . 3 C. . 2 D. . 2 Câu 18. Một cấp số cộng gồm 5số hạng. Hiệu số hạng đầu và số hạng cuối bằng 2.0 Tìm công sai d của cấp số cộng đã cho A. .d 5 B. . d 4 C. . D.d . 4 d 5 Câu 19. (TRƯỜNG THPT THANH THỦY 2018 -2019) Cho cấp số cộng u cón các số hạng đầu lần lượt là 5;9;13;17; . Tìm số hạng tổng quát un của cấp số cộng? A. .u n 4n 1 B. . C.u n. 5n 1 D. . un 5n 1 un 4n 1 Câu 20. (THPT XUÂN HÒA - VP - LẦN 1 - 2018) Xác định số hàng đầu u1 và công sai d của cấp số cộng un có u9 5u2 và u13 2u6 5 . A. u1 3 và d 4 . B. u1 3 và d 5 . C. u1 4 và d 5 . D. u1 4 và d 3 . Câu 21. (Chuyên Tự Nhiên Lần 1 - 2018-2019) Cho un là một cấp số cộng thỏa mãn u1 u3 8và u4 10 . Công sai của cấp số cộng đã cho bằng A. .3 B. . 6 C. . 2 D. . 4 u2 u3 u5 7 Câu 22. Tìm công thức số hạng tổng quát của cấp số cộng unthỏa mãn: u1 u6 12 A. .u n 2n 3B. . C.u .n 2n 1D. . un 2n 1 un 2n 3 DẠNG 3. TÌM HẠNG TỬ TRONG CẤP SỐ CỘNG Câu 23. (THPT YÊN LẠC - LẦN 4 - 2018) Cấp số cộng un có số hạng đầu u1 , 3công sai d 2 thì số hạng thứ 5 là A. .u 5 8 B. . u5 1 C. . D.u5 . 5 u5 7 Câu 24. (THPT CAN LỘC - HÀ TĨNH - LẦN 1 - 2018) Cho cấp số cộng có u1 ,3 d .4 Chọn khẳng định đúng trong các khẳng định sau? A. .u 5 15 B. . u4 8C. . D.u3 . 5 u2 2 Câu 25. (THPT LÊ HOÀN - THANH HÓA - LẦN 1 - 2018) Cho cấp số cộng un có u1 1 và1 công sai d 4 . Hãy tính u99 . A. .4 01 B. . 403 C. . 402 D. . 404 Câu 26. (THPT LÊ HOÀN - THANH HÓA - LẦN 1 - 2018) Cho cấp số cộng u , biết: u 3 n 1 , u2 1. Chọn đáp án đúng. A. .u 3 4 B. . u3 7 C. . uD.3 . 2 u3 5 3
  4. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 27. (THPT NGUYỄN THỊ MINH KHAI - HÀ TĨNH - 2018) Một cấp số cộng un có u13 8và d 3. Tìm số hạng thứ ba của cấp số cộng un . A. .5 0 B. . 28 C. . 38 D. 44 Câu 28. (Kim Liên - Hà Nội - L1 - 2018-2019) Cho cấp số cộng un có số hạng đầu u1 và3 công sai d 2 . Giá trị của u7 bằng: A. .1 5 B. . 17 C. . 19 D. . 13 Câu 29. (Đề minh họa thi THPT Quốc gia năm 2019 – Đề số 6) Cho cấp số cộng un có số hạng đầu u1 2 và công sai d 4 . Giá trị u2019 bằng A. .8 074 B. . 4074 C. . 807D.8 . 4078 Câu 30. (DHSP HÀ NỘI HKI 2017-2018) Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d 2 . A. . 21 B. . 23 C. . 19 D. . 17 Câu 31. (Phát triển đề minh họa 2019_Số 1) Cho cấp số cộng un có số hạng đầu u1 2 và công sai d 7. Giá trị u6 bằng A. .3 7 B. . 37 C. . 33 D. . 33 Câu 32. Cho cấp số cộng un có số hạng đầu u1 2 và công sai d 5 . Giá trị u4 bằng A. 22. B. 17. C. 12. D. 250. Câu 33. (LƯƠNG TÀI 2 BẮC NINH LẦN 1-2018-2019) Cho cấp số cộng un với số hạng đầu tiên u1 2 và công sai d 2 . Tìm u2018 ? 2018 2017 A. .u 2018 2 B. . C. .u 2018 2D. . u2018 4036 u2018 4038 Câu 34. (THPT TRẦN PHÚ - ĐÀ NẴNG - 2018) Cho cấp số cộng un có u1 và3 công sai d .7 Hỏi kể từ số hạng thứ mấy trở đi thì các số hạng của un đều lớn hơn 2018 ? A. .2 87 B. . 289 C. . 288 D. . 286 Câu 35. (THPT CHUYÊN VĨNH PHÚC - LẦN 3 - 2018) Viết ba số xen giữa 2và 2 2để ta được một cấp số cộng có 5 số hạng? A. 6 , 12 , 18 . B. 8 , 13 , 18 . C. 7 , 12 , 17 . D. 6 , 10 , 14 . u 2 Câu 36. Cho cấp số cộng có 1 và d 4 . Chọn khẳng định đúng trong các khẳng định sau ? A. .u 4 8 B. . u5 1C.5 . D.u .2 3 u3 6 Câu 37. Cho cấp số cộng un với u1 ;2 d .9 Khi đó số 201 8là số hạng thứ mấy trong dãy? A. .2 26 B. . 225 C. . 223 D. . 224 Câu 38. Cho cấp số cộng 1, 4, 7, . Số hạng thứ 100 của cấp số cộng là A. .2 97 B. . 301 C. . 295 D. . 298 u1 3 u8 24 u11 Câu 39. Cho cấp số cộng un biết , thì bằng A. .3 0 B. . 33 C. . 32 D. . 28 Câu 40. Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và 2. Tìm số hạng thứ 5. A. u5 2. B. u5 2. C. u5 0. D. u5 4. 4
  5. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 41. (CHUYÊN KHTN - LẦN 1 - 2018) Cho cấp số cộng un , biết u2 3 và u4 7 . Giá trị của u15 bằng A. .2 7 B. . 31 C. . 35 D. . 29 Câu 42. (SỞ GD&ĐT HƯNG YÊN - 2018) Cho cấp số cộng un có u2 2001 và u5 1995 . Khi đó u1001 bằng A. .4 005 B. . 1 C. . 3 D. . 4003 Câu 43. (THPT CHUYÊN HÙNG VƯƠNG - BÌNH DƯƠNG - 2018) Một cấp số cộng có số hạng đầu u1 = 2018 công sai d = - 5 . Hỏi bắt đầu từ số hạng nào của cấp số cộng đó thì nó nhận giá trị âm. A. .u 406 B. . u403 C. . u405 D. . u404 u1 2u5 u6 15 Câu 44. Cho cấp số cộng un có . Số hạng đầu u là1 u3 u7 46 A. .u 1 5 B. . u1 5 C. . D.u1 . 3 u1 3 u1 2 Câu 45. Cho dãy số U xác định bởi Tính u ? n * 10 un 1 un 5, n N A. .5 7 B. . 62 C. . 47 D. . 52 Câu 46. (THPT NGUYỄN TẤT THÀNH - YÊN BÁI - 2018) Cho cấp số cộng un thỏa mãn u5 3u3 u2 21 . Tính số hạng thứ 100 của cấp số. 3u7 2u4 34 A. .u 100 243B. . C. u. 100 29D.5 . u100 231 u100 294 2 2 2 Câu 47. Cho cấp số cộng u cón công sai d 2và biểu thức u2 u3 u đạt4 giá trị nhỏ nhất. Số 2018 là số hạng thứ bao nhiêu của cấp số cộng un ? A. .1 011 B. . 1014 C. . 1013D. . 1012 Câu 48. (PHAN ĐĂNG LƯU - HUẾ - LẦN 1 - 2018) Cho cấp số cộng un , biết u1 5 , d 2 . Số 81 là số hạng thứ bao nhiêu? A. .1 00 B. . 50 C. . 75 D. . 44 Câu 49. (THPT LƯƠNG ĐẮC BẰNG - THANH HÓA - LẦN 1 - 2018) Một cấp số cộng un có u9 47 , công sai d 5 . Số 10092 là số hạng thứ mấy trong cấp số cộng đó? A. .2 018 B. 2017 . C. .2 016 D. . 2019 Câu 50. (THPT HOÀNG HOA THÁM - HƯNG YÊN - 2018) Cho hai cấp số cộng xn : ,4 ,7 1 , 0 và yn : 1 , 6 , 11 , . Hỏi trong 2018 số hạng đầu tiên của mỗi cấp số có bao nhiêu số hạng chung? A. .4 04 B. . 673 C. . 403 D. . 672 DẠNG 4. TÍNH TỔNG VÀ MỘT SỐ BÀI TOÁN LIÊN QUAN Câu 51. (THPT TRIỆU THỊ TRINH - LẦN 1 - 2018) Cho cấp số cộng un có u1 1 và công sai d 2 . Tổng S10 u1 u2 u3 u10 bằng: 5
  6. CÁC DẠNG TOÁN THƯỜNG GẶP A. .S 10 110 B. . SC.10 . 100 D. . S10 21 S10 19 Câu 52. [KIM LIÊN - HÀ NỘI - LẦN 1 - 2018] Cho dãy số un là một cấp số cộng có u1 và3 công sai d 4 . Biết tổng n số hạng đầu của dãy số un là Sn 253 . Tìm n . A. .9 B. . 11 C. . 12 D. . 10 * Câu 53. (THPT CHU VĂN AN - HÀ NỘI - 2018) Cho cấp số cộng un , n ¥ có số hạng tổng quát un 1 3n . Tổng của 10 số hạng đầu tiên của cấp số cộng bằng. A. . 59049 B. . 59C.04 8. D. . 155 310 Câu 54. (THPT TỨ KỲ - HẢI DƯƠNG - LẦN 2 - 2018) Cho dãy số vô hạn un là cấp số cộng có công sai d , số hạng đầu u1 . Hãy chọn khẳng định sai? u u A. .u 1 B.9 , . u u d n 2 5 2 n n 1 n C. .S D. , . 2u 11d u u (n 1).d n ¥ * 12 2 1 n 1 Câu 55. (PHÁT TRIỂN ĐỀ MINH HỌA THI THPT QUỐC GIA 2019Cho cấp số cộng un có số hạng đầu u1 3 và công sai d 2 . Tổng của 2019 số hạng đầu bằng A. .4 080 399 B. . C.4 .8 00 399 D. . 4 399 080 8 154 741 Câu 56. (SGD&ĐT HÀ NỘI - 2018) Cho un là cấp số cộng biết u3 u13 8 .0 Tổng 15 số hạng đầu của cấp số cộng đó bằng A. .8 00 B. . 600 C. . 570 D. 630 Câu 57. Cho cấp số cộng u với số hạng đầu u 6 và công sai d 4. Tính tổng S của 14 số hạng n 1 đầu tiên của cấp số cộng đó. A. .S 46 B. . S 3C.08 . D. . S 644 S 280 Câu 58. (Chuyên Thái Bình lần 2 - 2018-2019) Cho cấp số cộng un có u5 1 ;5 u20 6 .0 Tổng 2 0 số hạng đầu tiên của cấp số cộng là A. .S 20 250 B. . C.S20 . 200 D. . S20 200 S20 25 Câu 59. (HỌC KỲ I ĐAN PHƯỢNG HÀ NỘI 2017 - 2018) Cho cấp số cộng un biết u3 6,u8 16. Tính công sai d và tổng của 10 số hạng đầu tiên. A. .d 2;B.S1 0. 100C. . D.d . 1;S10 80 d 2;S10 120 d 2;S10 110 Câu 60. Cho cấp số cộng có công sai d 6 và S3 9 . Khi đó tổng 20 số hạng đầu tiên S20 là A. .S 20 1200 B. . C.S 2.0 1080 D. . S20 250 S20 1080 Câu 61. Cho cấp số cộng un với un 3 2n thì S60 bằng A. . 6960 B. . 117 C. Đáp án khác. D. . 116 Câu 62. Dãy số u là cấp số cộng, công sai d . Tổng S u u u ,u 0 là n n 1 100 1 2 100 1 S100 2u1 99d A. . B. . C. . D. . S100 50u100 S100 50 u1 u100 S100 100 u1 u100 Câu 63. (CHUYÊN TRẦN PHÚ - HẢI PHÒNG - LẦN 2 - 2018) Cho cấp số cộng un có u2013 u6 1000. Tổng 2018 số hạng đầu tiên của cấp số cộng đó là: 6
  7. CÁC DẠNG TOÁN THƯỜNG GẶP A. .1 009000 B. . 100C.80 0. D. . 1008000 100900 u1 u4 8 Câu 64. (THPT Yên Dũng 3 - Bắc Giang lần 1- 18-19) Cho cấp số cộng (thỏaun ) mãn . u3 u2 2 Tính tổng 10 số hạng đầu của cấp số cộng trên. A. .1 00 B. . 110 C. . 10 D. . 90 Câu 65. (LẦN 01_VĨNH YÊN_VĨNH PHÚC_2019) Cho cấp số cộng un có u4 12 ; u14 18 . Tổng của 16 số hạng đầu tiên của cấp số cộng là: A. .S 24 B. . S C.25 . D. . S 24 S 26 u2 u3 u5 10 Câu 66. (THPT NGUYỄN TRÃI - ĐÀ NẴNG - 2018) Cho cấp số cộng un thỏa . u4 u6 26 Tính S u1 u4 u7 u2011 A. .S 202B.37 3. 6 C. . S D.2 0.23563 S 6730444 S 6734134 Câu 67. (THPT CHUYÊN THÁI BÌNH - LẦN 5 - 2018) Cho một cấp số cộng un có u1 5 và tổng của 50 số hạng đầu bằng 5150 . Tìm công thức của số hạng tổng quát un . A. .u n 1 4n B. . unC. 5. n D. . un 3 2n un 2 3n Câu 68. (THPT CHUYÊN HÙNG VƯƠNG - BÌNH DƯƠNG - 2018) Một cấp số cộng có tổng của n 2 * số hạng đầu Sn tính theo công thức Sn = 5n + 3n,(n Î ¥ ) . Tìm số hạng đầu u1 và công sai d của cấp số cộng đó. A. .u 1 =B.- .8 C.;d .= 10D. . u1 = - 8;d = - 10 u1 = 8;d = 10 u1 = 8;d = - 10 Câu 69. (THPT LÊ HOÀN - THANH HÓA - LẦN 1 - 2018) Cho cấp số cộng un biết u5 18 và 4Sn S2n . Giá trị u1 và d là A. u1 2 , d 3 . B. u1 3, d 2 . C. u1 2 , d 2 . D. u1 2 , d 4 . a3 Câu 70. Gọi S làn tổng nsố hạng đầu tiên trong cấp số cộng an Biết. S6 S 9tỉ, số bằng: a5 9 5 5 3 A. . B. . C. . D. . 5 9 3 5 Câu 71. (TOÁN HỌC VÀ TUỔI TRẺ SỐ 1 - 2018) Cho cấp số cộng un và gọi S làn tổng nsố hạng đầu tiên của nó. Biết S7 77 và S12 192 . Tìm số hạng tổng quát un của cấp số cộng đó A. .u n 5 4nB. . C. u. n 3 2D.n . un 2 3n un 4 5n Câu 72. (CHUYÊN ĐHSPHN - 2018) Tổng của nsố hạng đầu tiên của một dãy số an , n là1 2 Sn 2n 3n . Khi đó A. an là một cấp số cộng với công sai bằng 4 . B. an là một cấp số nhân với công bội bằng 4 . C. an là một cấp số cộng với công sai bằng 1 . D. an là một cấp số nhân với công bội bằng 1 . Câu 73. (TRẦN PHÚ - HÀ TĨNH - LẦN 2 - 2018) Giải phương trình 1 8 15 22  x 7944 A. .x 330 B. . x C.22 0. D. . x 351 x 407 7
  8. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 74. (THCS - THPT NGUYỄN KHUYẾN - 2018) Cho cấp số cộng un có số hạng đầu bằng 1 và 1 1 1 tổng 100 số hạng đầu bằng 14950 . Giá trị của tổng bằng. u1u2 u2u3 u49u50 49 49 A. . B. . 148 C. . D. . 74 74 148 Câu 75. Cho một cấp số cộng un có u1 và1 tổng 10 0số hạng đầu bằng 1000 .0 Tính tổng 1 1 1 S . u1u2 u2u3 u99u100 100 200 198 99 A. .S B. . S C. . D. . S S 201 201 199 199 Câu 76. Cho tam giác đều A1B1C1 có độ dài cạnh bằng 4 . Trung điểm của các cạnh tam giác A1B1C1 tạo thành tam giác A2 B2C2 , trung điểm của các cạnh tam giác A2 B2C2 tạo thành tam giác A3B3C3 Gọi P1, P2 , P3 , lần lượt là chu vi của tam giác A1B1C1 , A2 B2C2 , A3B3C3 , Tính tổng chu vi P P1 P2 P3 A. .P 8 B. . P 24C. . PD. .6 P 18 DẠNG 5. BÀI TOÁN THỰC TẾ VÀ MỘT SỐ BÀI TOÁN KHÁC Câu 77. (THPT CHUYÊN THOẠI NGỌC HẦU - LẦN 3 - 2018) Hùng đang tiết kiệm để mua một cây guitar. Trong tuần đầu tiên, anh ta để dành 42 đô la, và trong mỗi tuần tiếp theo, anh ta đã thêm 8 đô la vào tài khoản tiết kiệm của mình. Cây guitar Hùng cần mua có giá 400 đô la. Hỏi vào tuần thứ bao nhiêu thì anh ấy có đủ tiền để mua cây guitar đó? A. .4 7 B. . 45 C. . 44 D. . 46 Câu 78. (THPT LÝ THÁI TỔ - BẮC NINH - 2018) Trong hội chợ tết Mậu Tuất 201 ,8 một công ty sữa muốn xếp 900 hộp sữa theo số lượng 1,3,5, từ trên xuống dưới (số hộp sữa trên mỗi hàng xếp từ trên xuống là các số lẻ liên tiếp - mô hình như hình bên). Hàng dưới cùng có bao nhiêu hộp sữa? A. 59. B. 30. C. 61. D. 57. Câu 79. (ĐẶNG THÚC HỨA - NGHỆ AN - LẦN 1 - 2018) Một công ti trách nhiệm hữu hạn thực hiện việc trả lương cho các kĩ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ti là 4,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm 0,3 triệu đồng mỗi quý. Hãy tính tổng số tiền lương một kĩ sư nhận được sau 3 năm làm việc cho công ti. A. 8(triệu3,7 đồng). B. (triệu7 đồng).8,3 C. (triệu đồng).73 ,8D. (triệu đồng). 87,3 8
  9. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 80. (PTNK CƠ SỞ 2 - TPHCM - LẦN 1 - 2018) Người ta trồng 46 5cây trong một khu vườn hình tam giác như sau: Hàng thứ nhất có 1 cây, hàng thứ hai có 2 cây, hàng thứ ba có 3 cây .Số hàng cây trong khu vườn là A. .3 1 B. . 30 C. . 29 D. . 28 Câu 81. (CHUYÊN VĨNH PHÚC - LẦN 1 - 2018) Trong sân vận động có tất cả 3 0dãy ghế, dãy đầu tiên có 15 ghế, các dãy liền sau nhiều hơn dãy trước 4 ghế, hỏi sân vận động đó có tất cả bao nhiêu ghế? A. .2 250 B. . 1740 C. . 438D.0 . 2190 Câu 82. (CHUYÊN HÀ TĨNH - LẦN 1 - 2018) Cho 4số thực a,b,c, dlà 4số hạng liên tiếp của một cấp số cộng. Biết tổng của chúng bằng 4 và tổng các bình phương của chúng bằng 24 . Tính P a3 b3 c3 d 3 . A. .P 64 B. . P 80C. . D.P . 16 P 79 Câu 83. (THTP LÊ QUÝ ĐÔN - HÀ NỘI - LẦN 1 - 2018) Cho cấp số cộng un có u1 .4 Tìm giá trị nhỏ nhất của u1u2 u2u3 u3u1 ? A. .- 20 B. . - 6 C. . - 8 D. . - 24 Câu 84. (THPT HÀ HUY TẬP - LẦN 2 - 2018) Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là: 1 5 1 7 3 5 1 3 A. . ;1; B. . ;1; C. . D.; 1; . ;1; 3 3 4 4 4 4 2 2 Câu 85. Trong hội chợ, một công ty sơn muốn xếp 108 9hộp sơn theo số lượng 1,3,5,. .từ. trên xuống dưới (số hộp sơn trên mỗi hàng xếp từ trên xuống dưới là các số lẻ liên tiếp – mô hình như hình bên dưới). Hàng cuối cùng có bao nhiêu hộp sơn? A. .6 3 B. . 65 C. . 67 D. . 69 Câu 86. (HỌC KỲ I ĐAN PHƯỢNG HÀ NỘI 2017 - 2018) Người ta trồng 127 5cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây, hàng thứ 2 có 2 cây, hàng thứ 3 có 3 cây,.hàng thứ k có k cây k 1 .Hỏi có bao nhiêu hàng ? A. .5 1 B. . 52 C. . 53 D. . 50 Câu 87. (THUẬN THÀNH SỐ 2 LẦN 1_2018-2019) Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, .Hỏi có bao nhiêu hàng cây. A. .7 8 B. . 243 C. . 77 D. . 244 Câu 88. (TH&TT LẦN 1 – THÁNG 12) Bà chủ quán trà sữa X muốn trang trí quán cho đẹp nên quyết định thuê nhân công xây một bức tường bằng gạch với xi măng (như hình vẽ bên dưới), biết hàng dưới cùng có 500 viên, mỗi hàng tiếp theo đều có ít hơn hàng trước 1 viên và hàng trên cùng có 1 viên. Hỏi số gạch cần dùng để hoàn thành bức tường trên là bao nhiêu viên? 9
  10. CÁC DẠNG TOÁN THƯỜNG GẶP A. 25250. B. 250500. C. 12550. D. 125250. Câu 89. Người ta trồng 3240 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây? A. .8 1 B. . 82 C. . 80 D. . 79 Câu 90. Cho hai cấp số cộng hữu hạn, mỗi cấp số cộng có 100 số hạng là 4, 7, 10, 13, 16,. .và. 1, 6, 11, 16, 21, Hỏi có tất cả bao nhiêu số có mặt trong cả hai cấp số cộng trên? A. 20 . B. .1 8 C. 21. D. 19. Câu 91. (THPT CHUYÊN LƯƠNG VĂN CHÁNH - PHÚ YÊN - 2018) Sinh nhật bạn của An vào ngày 01 tháng năm. An muốn mua một món quà sinh nhật cho bạn nên quyết định bỏ ống heo 100 đồng vào ngày 01 tháng 01 năm 2016 , sau đó cứ liên tục ngày sau hơn ngày trước 100 đồng. Hỏi đến ngày sinh nhật của bạn, An đã tích lũy được bao nhiêu tiền? (thời gian bỏ ống heo tính từ ngày 01 tháng 01 năm 2016 đến ngày 30 tháng 4 năm 2016 ). A. 7đồng.38.10 0 B. đồng. 72C.6.0 0đồng.0 D. đồng71.4.000 750.300 Câu 92. (LẦN 01_VĨNH YÊN_VĨNH PHÚC_2019) Gọi Slà tập hợp tất cả các số tự nhiên ksao cho k k 1 k 2 C14 , C14 , C14 theo thứ tự đó lập thành một cấp số cộng. Tính tổng tất cả các phần tử của S . A. .1 2 B. . 8 C. . 10 D. . 6 1 Câu 93. (THPT Đoàn Thượng-Hải Dương-HKI 18-19) Cho x2 ; ; y theo2 thứ tự lập thành một cấp số 2 cộng. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P 3xy y2 . Tính S M m 3 1 A. .1 B. . 2 C. . 3 D. . 2 2 un Câu 94. Cho dãy số u thỏa mãn u 2018 và u với mọi n 1 . Giá trị nhỏ nhất của n n 1 n 1 2 1 un 1 để u bằng n 2018 A. 4072325 B. 4072324 C. 4072326 D. 4072327 Câu 95. (THCS&THPT NGUYỄN KHUYẾN - BÌNH DƯƠNG - 2018) Cho cấp số cộng un có u1 3 và công sai d 2 , và cấp số cộng vn có v1 2 và công sai d 3 . Gọi X ,Y là tập hợp chứa 1000 số hạng đầu tiên của mỗi cấp số cộng. Chọn ngẫu nhiên 2 phần tử bất kỳ trong tập hợp X Y . Xác suất để chọn được 2 phần tử bằng nhau gần với số nào nhất trong các số dưới đây? A. .0 ,83.10 4 B. . 1C.,52 10 4 D. . 1,66.10 4 0,75.10 4 PHẦN B. LỜI GIẢI THAM KHẢO DẠNG 1. NHẬN DIỆN CẤP SỐ CỘNG Câu 1. Chọn C Dãy số un có tính chất un 1 un d thì được gọi là một cấp số cộng. Ta thấy dãy số: 1; 3; 7; 11; 15 là một cấp số cộng có số hạng đầu là 1 và công sai bằng 4. 10
  11. CÁC DẠNG TOÁN THƯỜNG GẶP Câu 2. Chọn D Định nghĩa: Cấp số cộng là một dãy số (hữu hạn hay vô hạn) mà trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó và một số d không đổi. 1 Đáp án A: Là cấp số cộng với u ;d 1 . 1 2 Đáp án B: Là cấp số cộng với u1 1;d 0 . Đáp án C: Là cấp số cộng với u1 8;d 2 . Đáp án D: Không là cấp số cộng vì u2 u1 2 ;u4 u3 1 . Câu 3. Chọn D 3 3 Theo công thức cấp số cộng ta có: 2(2a2 1) (1 2a) ( 2a) a2 a . 4 2 Câu 4. Chọn B Ta có un 1 un 3(n 1) 2018 (3n 2018) 3 un 1 un 3 . Vậy dãy số trên là cấp số cộng có công sai d 3 . Câu 5. Chọn B Xét dãy số un :un un 1 2,n 2 Ta có un un 1 2,n 2 Vậy dãy số đã cho là cấp số cộng với công sai d 2 Câu 6. Chọn D Theo định nghĩa cấp số cộng ta có: un 1 un d un 1 un d, n 1, d const Thử các đáp án ta thấy với dãy số: un 2n 3, n 1 thì: un 2n 3 un 1 un 2 const un 1 2 n 1 3 2n 1 Câu 7. Chọn D * Ta có dãy un là cấp số cộng khi un 1 un d , n ¥ với d là hằng số. Bằng cách tính 3 số hạng đầu của các dãy số ta dự đoán đáp án D. 5 n 1 2 5n 2 5 Xét hiệu u u ,n ¥ * . n 1 n 3 3 3 5n 2 Vậy dãy u là cấp số cộng. n 3 Câu 8. Chọn C. n n 1 n * n Xét dãy số un 1 3 , suy ra un 1 1 3 . Ta có un 1 un 2.3 ,n ¥ . Do đó un 1 3 không phải là cấp số cộng. Câu 9. Chọn B 11
  12. CÁC DẠNG TOÁN THƯỜNG GẶP n * n 1 n n * Với dãy số un n 2 , n ¥ , xét hiệu: un 1 un n 1 2 n 2 2 1, n ¥ thay đổi n * theo n nên un n 2 , n ¥ không là cấp số cộng. (A loại)17 * * Với dãy số un 3n 1, n ¥ , xét hiệu: un 1 un 3 n 1 1 3n 1 3, n ¥ là hằng số * nên un 3n 1, n ¥ là cấp số cộng. (B đúng) n * n 1 n n * Với dãy số un 3 , n ¥ , xét hiệu: un 1 un 3 3 2.3 , n ¥ thay đổi theo n nên n * un 3 , n ¥ không là cấp số cộng. (C loại) 3n 1 * Với dãy số un , n ¥ , xét hiệu: n 2 3 n 1 1 3n 1 5 * 3n 1 * un 1 un , n ¥ thay đổi theo n nên un , n ¥ n 1 2 n 2 n 2 n 3 n 2 không là cấp số cộng. (D loại) Câu 10. Áp dụng định lý sin trong tam giác ABC ta có a 2Rsin A , b 2Rsin B , c 2Rsin C Theo giả thiết a2 , b2 , c2 theo thứ tự đó lập thành một cấp số cộng nên a2 c2 2b2 4R2.sin2 A 4R2.sin2 C 2.4R2.sin2 B sin2 A sin2 C 2.sin2 B . Vậy sin2 A , sin2 B , sin2 C theo thứ tự đó lập thành một cấp số cộng. DẠNG 2. TÌM CÔNG THỨC CẤP SỐ CỘNG Câu 11. Chọn A Ta có u2 6 6 u1 d d 4 . Câu 12. Chọn C Vì un là cấp số cộng nên u2 u1 d d u2 u1 4 1 3 . Câu 13. Chọn D Ta có: d u2 u1 6 . Câu 14. Chọn B Vì un là cấp số cộng nên ta có u2 u1 d d u2 u1 8 2 6 . Câu 15. Ta có u6 u1 5d 27 d 6 . Câu 16. Ta có un 1 un 3 n 1 2 3n 2 3 Suy ra d 3 là công sai của cấp số cộng. 12