Đề cương ôn tập học kì I môn Toán 7
Bạn đang xem tài liệu "Đề cương ôn tập học kì I môn Toán 7", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_tap_hoc_ki_i_mon_toan_7.doc
Nội dung text: Đề cương ôn tập học kì I môn Toán 7
- ĐỀ CƯƠNG ÔN TẬP HỌC KÌ I MÔN: TOÁN 7 A/ PHẦN LÝ THUYẾT: I/ Đại số : Câu 1: Giá trị tuyệt đối của số hữu tỉ x được xác định như thế nào? Câu 2: Viết các công thức: nhân, chia hai lũy thừa cùng cơ số. Lũy thừa của: lũy thừa, một tích, một thương. Câu 3: Tỉ lệ thức là gì? Tính chất cơ bản của tỉ lệ thức. Viết công thức tính chất của dãy tỉ số bằng nhau. II/ Hình học : Câu 1: Phát biểu định nghĩa, tính chất của hai góc đối đỉnh. Câu 2: Nêu định nghĩa về: hai đường thẳng vuông góc, đường trung trực của một đoạn thẳng. Câu 3: Nêu dấu hiệu nhận biết hai đường thẳng song song. Nêu tính chất của hai đường thẳng song song. Phát biểu tiên đề Ơclit Câu 4: Nêu ba tính chất về “Từ vuông góc đến song song”. Viết giả thiết, kết luận của mỗi tính chất B/ PHẦN BÀI TẬP TỰ LUẬN: I. ĐẠI SỐ: 1. Dạng toán tính giá trị biểu thức: Bài 1. Tính giá trị biểu thức 15 7 9 15 2 2 3 2 3 1)A = + 1 2) B 16 : ( ) 28 : ( ) 34 21 34 17 3 7 5 7 5 3 2 1 1 1 1 3 3 1 1 3) C 25. 2. 4) D ( 2) . 0,25 : 2 1 3 5 2 2 4 4 6 2 3 5 1 5) E 5 16 4 9 25 0,3 400 6) F 1 : 6 2 6 2 0,5 0,(3) 0,1(6) 11 7) G 8) H 0,(32) 1,(5) 0,(25) 2,5 1,(6) 0,8(3) 83
- 5 8 16 1 1 62 4 9) I 1,53 : 5 1 1,25 1 10) K 3 1,9 9,5:4 28 9 63 3 3 75 25 2 81,624:4,8 4,505 125.0,75 66 63.33 36 11) P 12) N 2 2 73 0,44 : 0,88 3,53 (2,75)2 :0,52 1 5 5 1 3 13 2 10 203 46 20 20 13) 4 27 6 25 4 14) 8 4 Q M 25 5 3 10 1 2 4 64 1 : 12 14 7 3 3 7 4510.520 15)T 7515 Bài 2. Thực hiện các phép tính sau 6 2 6 3 1 3 1 3 a) b) 16 13 7 11 7 5 3 5 3 4 1 2 1 1 c) 7,2 ( 3,7 2,8) 0,3 d) 1 0,5 : 3 2 3 6 Bài 3. Thực hiện các phép tính sau 5 6 5 3 1 3 1 2 a) b) 26 19 8 11 8 7 3 7 3 5 2. Dạng toán tìm x, y, z, t: Bài 4: Tìm x, y biết: 1 1 5 11 2 3 a) x b) x c) 2007,5 x 1,5 0 4 3 9 12 5 4 1 2012 2014 d) x 4 1 e) x 2 y2 9 0 3 2 5 3 3 2 19 Bài 5 : a) x b) x 4 2 4 5 20 Bài 6: Tìm x, y, z, t (nếu có) từ các tỉ lệ thức sau: a) x : 3 = y : 5 và x – y = - 4 b) x : 5 = y : 4 = z : 3 và x – y = 3 c) x: y : z : t = 2 : 3 : 4 : 5 và x + y + z + t = - 42 x y y z x y y z d) ; và x y z 49 e) ; và x y z 10 2 3 5 4 2 3 4 5
- 1 2 3 2 1 2014 f) x : 1 : g)8 : x 2 : 0,02 h) x 2013 1 3 3 4 5 4 Bài 7: So sánh: a) 2333 và 3222 b) 32009 và 91005 c) 9920 và 999910 3. Dạng toán chứng minh tỉ lệ thức: a c Bài 8. Cho chứng minh rằng: b d a c a a c a c a) b) c) a b c d b b d 3a b 3c d 2 a.c a2 c2 a.b a2 b2 a.b a b d) 2 2 e) f) 2 bd b d c.d c2 d2 cd c d 4. Dạng toán đố vận dụng tính chất dãy tỉ số bằng nhau : Bài 9: Ba lớp 7A, 7B, 7C cùng được giao nhiệm vụ chăm sóc vườn cây của trường. Diện tích nhận chăm sóc của ba lớp theo thứ tự tỉ lệ với 5, 7, 8 và diện tích chăm sóc của lớp 7A ít hơn lớp 7B là 10 m 2. Tính diện tích vườn trường của mỗi lớp nhận chăm sóc. Bài 10: Hưởng ứng phong trào kế hoạch nhỏ của Đội ba chi đội 7A, 7B, 7C đã thu được tổng cộng 120kg giấy vụn. Biết rằng số giấy vụn thu được của ba chi đội lần lượt tỉ lệ với 9, 7, 8. Hãy tính số giấy vụn mỗi chi đội thu được. Bài 11: Tính độ dài các cạnh của một tam giác biết chu vi là 22cm và các cạnh của tam giác tỉ lệ với các số 2, 4, 5. Bài 12: Một mảnh đất hình chữ nhật có chu vi bằng 70m và tỉ số giữa hai cạnh của nó 3 bằng . Tính diện tích mảnh đất này. 4 5. Một số bài toán về đại lượng tỉ lệ thuận : Bài 13: Cho biết hai đại lượng x và y tỉ lệ thuận với nhau và khi x = 5 thì y = 3 a) Hãy biểu diễn y theo x. b) Tìm hệ số tỉ lệ của x đối với y. c) Tính y khi x = - 5; x = 10. Bài 14 : Lớp 7A tổ chức nấu chè để tham gia phiên chợ quê do nhà trường tổ chức cứ 4kg đậu thì phải dùng 2,5kg đường. Hỏi phải dùng bao nhiêu kg đường để nấu chè từ 9kg đậu
- Bài 15 : Để làm nước mơ người ta thường ngâm mơ theo công thức : 2kg mơ ngâm với 2,5kg đường. Hỏi cần bao nhiêu kg đường để ngâm 5kg mơ ? Bài 16 : Biết 17 lít dầu hỏa nặng 13,6kg. Hỏi 12kg dầu hỏa có chứa được hết vào chiếc can 16 lít không ? Bài 17: Biết độ dài ba cạnh của một tam giác tỉ lệ với 3 ; 4 ; 5. Tính độ dài mỗi cạnh của tam giác, biết tổng độ dài ba cạnh của tam giác ấy là 72 cm. Bài 18: Số học sinh của ba lớp 7A, 7B, 7C tỉ lệ với 4 ; 5 ; 6. Tính số học sinh của mỗi lớp, biết rằng số học sinh của lớp 7C nhiều hơn số học sinh của lớp 7A là 16 học sinh. 6. Một số bài toán về đại lượng tỉ lệ nghịch : Bài 19 : Cho biết hai đại lượng x và y tỉ lệ nghịch với nhau và khi x = 8 thì y = 15 a) Biểu diễn y theo x. b) Tìm hệ số tỉ lệ của x đối với y. c) Tính giá trị của y khi x = 6 và x = 10. Bài 20 : Một ô tô đi từ A đến B hết 6 giờ. Hỏi ô tô đó đi từ A đến B hết bao nhiêu thời gian nếu nó đi với vận tốc mới bằng 1,2 lần vận tốc cũ. Bài 21 : Ba đội máy cày, cày ba cánh đồng cùng diện tích. Đội thứ nhất cày xong trong 3 ngày, đội thứ hài trong 5 ngày và đội thứ ba trong 6 ngày. Hỏi mỗi đội có bao nhiêu máy ? Biết rằng đội thứ hai có nhiều hơn đội thứ ba 1 máy (năng suất các máy như nhau). Bài 22 : Với số tiền để mua 135 mét vải loại I có thể mua được bao nhiêu mét vải loại II biết rằng giá tiền vải loại II chỉ bằng 90% giá tiền vải loại I. 7. Hàm số và đồ thị : Bài 23 : Cho hàm số y = a.x (a 0) có đồ thị là đường thẳng d. a) Xác định hệ số a biết d đi qua A(- 1; -2) b) Điểm nào trong các điểm sau thuộc d ? M(2; - 3) A(1; - 2) I(- 2; 4) Bài 24: a) Vẽ đồ thị hàm số y = - 0,25.x b) Điểm nào sau đây thuộc đồ thị hàm số trên : H(2; - 0,5) K(- 4; - 1) y Bài 25: a) Đặt tên và xác định toạ độ 3 của 7 điểm trong hình vẽ bên. 2 1 b) Đường thẳng trong hình vẽ x bên là đồ thị của hàm số bậc nhất nào ? -3 -2 -1 0 1 2 3 -1 -2 -3
- Bài 26: Vẽ trên cùng một hệ trục toạ độ đồ thị các hàm số sau : 1 1 a) y = - x b) y x c) y x 2 2 Bài 27: Vẽ đồ thị của hàm số y = f(x) = - 0,5.x . Bằng đồ thị hãy tìm: a) f(2) ; f(- 2) ; f(4) ; f(0). b) Giá trị của x khi y = - 1 ; y = 0 ; y = 2,5 c) Các giá trị của x khi y dương, khi y âm. Bài 28: Cho hàm số y = -3x a) Vẽ đồ thị hàm số b) Điểm nào sau đây thuộc đồ thị của hàm số y = -3x : B(-1 ; -3) và C(0,5 ; - 1,5) Bài 29: Cho hàm số y = -2x a) Vẽ đồ thị hàm số. b) Cho các điểm B(-1 ; 2) và C(-1,5 ; -3). Hỏi điểm nào thuộc đồ thị của hàm số y = -2x ? Vì sao ? II. HÌNH HỌC : Bài 1: Cho Ot là tia phân giác của góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Ot lấy điểm M sao cho OM > OA. a) Chứng minh AOM BOM . b) Gọi C là giao điểm của tia AM và tia Oy. D là giao điểm của BM và Ox. Chứng minh rằng: AC = BD. c) Nối A và B, vẽ đường thẳng d vuông góc với AB tại A. Chứng minh: d // Ot. Bài 2: Cho góc nhọn xOy. Lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA = OB. Qua A kẻ đường thằng vuông góc với Ox cắt Oy tại M, qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. Gọi H là giao điểm của AM và BN, I là trung điểm của MN. Chứng minh rằng a) ON = OM và AN = BM b) Tia OH là tia phân giác của góc xOy c) Ba điểm O, H, I thẳng hang. Bài 3: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD = MB. a) Chứng minh : AD = BC.
- b) Chứng minh : CD vuông góc với AC. c) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh : ABM CNM Bài 4: Cho ABC , M là trung điểm của AB. Đường thẳng qua M và song song với BC cắt AC ở I, đường thẳng qua I và song song với AB cắt BC ở K. Chứng minh rằng : a) AM = IK. b) AMI IKC. c) AI = IC. Bài 5: Cho góc nhọn xOy. Trên tia Ox xác định hai điểm A và B sao cho điểm A nằm giữa hai điểm O và B. Trên tia Oy xác định hai điểm C và D sao cho OC = OA, OD = OB Gọi I là giao điểm của AD và BC. Chứng minh rằng: a) AD = BC. b) AI = IC. c) OI BD. Bài 6: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID = IA a) CMR: BID CIA b) CMR: BD AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. Chứng minh BAM ABC d) CMR: AB là tia phân giác của góc DAM. Bài 7: Cho tam giác ABC (AB < AC). Trên tia BA lấy điểm D sao cho BD = BC. Nối C với D. Tia phân giác của góc B cắt cạnh AC và CD theo thứ tự ở E và I. a) Chứng minh BID BIC b) Chứng minh ED = EC c) Kẻ AH vuông góc với CD tại điểm H, chứng minh AH // BI. d) Biết số đo góc ABC bằng 70o , tính số đo góc BCD và DAH. III. BÀI TẬP NÂNG CAO : Bài 1: Chứng tỏ rằng : a, A = 102008 + 125 45 b, B = 52008 + 52007 + 52006 31
- c, M = 88 + 220 17 d, H = 3135 . 299 – 3136 . 36 7 Bài 2: Cho A = 2+ 22 + 23 + + 260 Chứng tỏ rằng : A 3 , A 7 , A 5 Bài 3: Chứng tỏ rằng : a, D = 3 + 32 + 33 + 34 + + 32007 13 b, E = 71 + 72 + 73 + 74 + . + 74n-1 + 74n 400 1 1 1 1 1 Bài 4: Chứng tỏ rằng. a, H = 1 2 2 32 4 2 2007 2 20082 3 1 1 1 1 1 1 1 1 b, K = 22 42 62 82 102 122 142 2 Bài 5: Chứng tỏ : 1 1 1 1 1 a, H = 1 (n N * ,n 1) 22 32 42 20032 n 2 1 1 1 1 1 1 1 1 b, K = < 22 42 62 82 102 122 142 2 1 2 3 49 50 3 c, D 3 32 33 349 320 4 Bài 6: Tìm x, biết a. |x – 3| + |x + 5| – 8 = 0 b. |2x – 1| + |2x – 5| – 4 = 0 c. |x – 3| + |3x + 4| + |2x – 1| = 8 Bài 7: Tìm x, y thỏa mãn a. |x – 3y|11 + (y + 4)12 = 0 b. (x + y)2016 + 2017|y – 1|³ = 0 c. |x – y – 5| + 2015(y – 3)2016 = 0 Bài 8: Tìm x, y thỏa mãn a. (x – 1)² + (y + 3)4 = 0
- b. 2(x – 5)6 + 5|2y – 7|5 = 0 c. |x + 3y – 1| + (3y – 2)2016 = 0 Bài 9: Tìm giá trị lớn nhất của biểu thức 2 7x 5 11 2y 7 13 15 x 1 32 a. A = b. B = c. C = 7x 5 4 2 2y 7 6 6 x 1 8 Bài 10: Tìm giá trị nhỏ nhất của biểu thức a. A = 1,7 + |3,4 – x| b. B = |x + 2,8| – 3,5 c. D = |4x – 3| + |5y + 7| + 7 d. E = 2(3x – 1)² – 4 Bài 11 : Cho dãy tỉ số bằng nhau : 2a b c d a 2b c d a b 2c d a b c 2d a b c d a b b c c d d a Tính M , biet : M c d d a a b b c Bài 12 : Tìm x, y, z biết : x y z a) và x- 3y +4z = 62 b) 2x = 3y ; 5y = 7z và 3x + 5z – 7y – 4 3 9 30 x y z c) và x2 y2 z2 585 d) 5x = 8y = 20z và z – y – z = 3 5 7 3 2x 5y 10z 2x 5y 10z e) và x y z 48 7 9 11 2bz 3cy 3cx az ay 2bx Bài 13: Cho dãy tỉ số bằng nhau . Chứng minh: a 2b 3c x y z . a 2b 3c Bài 14: Tìm tất cả các số tự nhiên m, n sao cho : 2m + 2015 = n 2016 + n - 2016. Bài 15 : Tìm giá trị nhỏ nhất của biểu thức P = x 2015 x 2016 x 2017 . Bài 16: Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này ?
- Bài 17 : Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì ( khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của DK. Bài 18: Cho tam giác ABC cân tại A có Aµ 200 , vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh: a) Tia AD là phân giác của góc BAC b) AM = BC Bài 19: Cho hình vuông ABCD, điểm E thuộc cạnh CD. Tia phân giác của góc ABE cắt AD ở K. Chứng minh AK + CE = BE. 3n 1 Bài 20: a) Tìm các giá trị nguyên của n để phân số M = có giá trị là số nguyên. n 1 b) Tính giá trị của biểu thức: N = xy2z3 x2y3z4 x3y4z5 x2014y2015z2016 tại: x -1; y -1; z -1.