Đề cương ôn thi Tốt nghiệp THPT - Dạng toán: Tính đơn điệu hàm hợp dựa vào đồ thị và biểu thức của F’(x)
Bạn đang xem tài liệu "Đề cương ôn thi Tốt nghiệp THPT - Dạng toán: Tính đơn điệu hàm hợp dựa vào đồ thị và biểu thức của F’(x)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_thi_tot_nghiep_thpt_dang_toan_tinh_don_dieu_ham.docx
Nội dung text: Đề cương ôn thi Tốt nghiệp THPT - Dạng toán: Tính đơn điệu hàm hợp dựa vào đồ thị và biểu thức của F’(x)
- TÍNH ĐƠN ĐIỆU HÀM HỢP DỰA VÀO ĐỒ THỊ VÀ BIỂU THỨC CỦA F’(X) Phương pháp: Bước 1: Tìm các nghiệm của phương trình f ' x 0 x x0 .(Chỉ lấy nghiệm đơn hoặc nghiệm bội lẻ). -Trên đồ thị, nếu f ' x tiếp xúc với trục hoành tại x0 thì loại x0 (Nghiệm bội chẵn) y -2 1 -4 x Ví dụ trên nghiệm x0 1 loại. 3 2 - Nếu f '(x) x 1 x 2 x 3 thì loại nghiệm x0 3 Bước 2: Tính đạo hàm của hàm hợp: y'(x) u'(x). f ' u(x) u'(x) 0 u'(x) 0 Giải phương trình: y' x 0 f '(u(x)) 0 u(x) x0 Xét dấu y' x dựa theo phương pháp khoảng. Bước 3: Lập bảng biến thiên và Kết luận. Ví dụ mẫu: Câu 1. Cho hàm số y f x liên tục trên ¡ và có đồ thị như hình vẽ sau Hàm số y f x2 2x 3 nghịch biến trên khoảng nào dưới đây ? A. ; 1 . B. 1; . C. 2;0 . D. 2; 1 .
- 2 Câu 2. Cho hàm số f (x) có đạo hàm f ¢(x)= (x - 1) (x 2 - 2x) với mọi x Î ¡ . Hỏi số thực nào dưới đây thuộc khoảng đồng biến của hàm số g(x)= f (x 2 - 2x + 2) ? 3 A. . B. 3. C. - 1. D. - 2. 2 Câu 3: Cho hàm số bậc bốn y f x có đồ thị hàm số y f x như hình vẽ bên. Hàm số g x f x2 x 1 đồng biến trên khoảng 1 A. 0;1 . B. 2; 1 . C. 2; . D. ; 2 . 2 BÀI TẬP Câu 1. Cho hàm số y f x có đồ thị f x như hình vẽ sau Hàm số g x f x2 2 nghịch biến trên khoảng nào dưới đây? A. 1;3 . B. 3; 1 . C. 0;1 .D. 4; . 2 2 Câu 2. [2D1-1.5-3] Cho hàm số y f x có đạo hàm f x x x 2 x 5 . Hàm số g x f 10 5x đồng biến trên khoảng nào dưới đây? A. ; 1 . B. 1;2 . C. 2; . D. 1;3 .
- 2 Câu 3. [2D1-2.1-3] Cho hàm số y f x có đạo hàm f x x x 1 x 2 với mọi giá trị của x 5x . Xét hàm số g x f 2 . Trong các khẳng định sau khẳng định nào đúng? x 4 A. Hàm số đồng biến trên khoảng 0;1 . B. Hàm số nghịch biến trên khoảng 0;4 . C. Hàm số đạt cực đại tại x 0 . D. Hàm số đạt giá trị nhỏ nhất tại x 1. Câu 4. Cho hàm số y f x . Đồ thị hàm số y f x được cho như hình vẽ sau Hàm số g x f 2x4 1 đồng biến trên khoảng nào sau đây? 1 3 A. . ; 1 B. . ;1 C. . D.1; . 2; 2 2 Câu 5. Cho hàm số y f x . Đồ thị hàm số y f x được cho như hình vẽ sau -2 O 2 4 Hàm số g x f x2 3x đồng biến trên khoảng nào sau đây? 3 3 A. 0;1 . B. 1; . C. ;2 . D. 2;4 2 2 Câu 6: Cho hàm số y f x . Đồ thị y f x như hình bên và f 2 f 1 0. 2 Hàm số g x f 3 x nghịch biến trong khoảng nào trong các khoảng sau?
- A. 1;2 . B. 2;4 . C. 4; . D. 2; . Câu 7. Cho hàm số y f x có đạo hàm trên ¡ , thỏa mãn f 1 f 3 0 và đồ thị của hàm số 2 y f x có dạng như hình dưới đây. Hàm số y f x nghịch biến trên khoảng nào trong các khoảng sau? y 4 3 2 1 f(x)=-X^3+3X^2+X-3 x -3 -2 -1 1 2 3 -1 -2 -3 -4 A. 2;2 . B. 0;4 . C. 2;1 . D. 1;2 . Câu 8. [2D1-1.2-3] Cho hàm số y f x có bảng biến thiên như hình vẽ sau 3 2 Hàm số g x f x 3 f x nghịch biến trên khoảng nào dưới đây? A. 2;3 . B. 1;2 C. 3;4 D. ; 1 . Câu 9. [2D1-1.2-3] Cho hàm số y f x có bảng biến thiên như sau 2 Hàm số g x f 3 x nghịch biến trên khoảng nào trong các khoảng sau? A. 2;5 . B. 1;2 . C. 2;5 . D. 5; .