Đề kiểm tra Đại số Lớp 11 - Kết thúc chương I

doc 3 trang hangtran11 10/03/2022 3450
Bạn đang xem tài liệu "Đề kiểm tra Đại số Lớp 11 - Kết thúc chương I", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_kiem_tra_dai_so_lop_11_ket_thuc_chuong_i.doc

Nội dung text: Đề kiểm tra Đại số Lớp 11 - Kết thúc chương I

  1. ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 01) Bài 1. T×m tËp x¸c ®Þnh cña hµm sè 2sin x 1 1 a) y f (x) . b) y f (x) . 1 cos x 3 cot 2x 1 Bài 2. Giải các phương trình sau đây: a) 2cos x 3 0 . b) tan x.tan3x 1. 3 c) sin2 x 3 sin 2x 3cos2 x 0 . d) cos2 x cos2 2x cos2 3x 1 . 1 cos2x d) 1 cot 2x . sin2 2x ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 02) tan3x Bài 1. a) XÐt tÝnh ch½n lÎ cña hµm sè y f (x) . cos2x 1 b) T×m GTLN và GTNN cña hµm sè y f (x) 3 cos2x 2sin xcos x 2 . Bài 2. Giải các phương trình sau đây: 0 a) 2sin x 45 3 . b) sin x cos2x 0 . 3 c) cos2x 3sin x 2 . d) cos2xsin x cos3x cos x 0 . 3 1 3 cos3x 1 e) cos 2x 3 cos2x 3 , x . f) tan 2x . 2 3 6 2sin x 2 sin 2x ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 03) Bài 1. a) Lập bảng biến thiên của hàm số y f (x) 2sin 2x 3 trên ; . 3 2 2 b) T×m GTLN và GTNN cña hµm sè y f (x) sin4 x 2cos2 x 1. Bài 2. Giải các phương trình sau đây: a) 2sin x 2 . b) cos x sin x 2 sin 2x . 4 c) 4 cos3 x 3 2 sin 2x 8cos x . d) 2sin x cos x 1 3 cos 2x . e) cos5xsin 4x cos3x.sin 2x , x 0; . 2 1 2cos x f) 2 2 sin x . cos x(sin x cos x) sin x cos x ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 04) 1 Bài 1. a) TËp x¸c ®Þnh cña hµm sè y 1 cos2x . 2tan 2x 3 b) T×m tập giá trị cña hµm sè y f (x) sin4 x cos4 x 1. Bài 2. Giải các phương trình sau đây: 3 0 a) 2sin x 2 0 . b) 3 tan(2x 30 ) 1 0 . 4 c) sin3x cos( 3x) 2 cos2x . d) 2sin2 x 3 sin 2x 3 . 2 2 1 cot 2x cot x 4 4 e) 2sin (x ) 2sin x tan x . f) 2 2 sin x cos x 3 . 4 cos x GV: NGUYỄN THỊ THANH HẢI
  2. ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 05) Bài 1. a) XÐt tÝnh ch½n lÎ cña hµm sè y f (x) tan3 2x 2cot x . b) Lập bảng biến thiên của hàm số y f (x) 2 sin 2x sin 2x trên 0; . 4 4 2 Bài 2. Giải các phương trình sau đây: a) tan 2x 1 3 b) cos(2x 300 ) cos(x 600 ) 0 , 2 1 1 c) cos 3x d) 3sin x cos x 6 2 cos x x x 2 2 x e) 1 sin sin x cos sin x 2cos . f) 1 tan x 1 sin2x 1 tan x 2 2 4 2 ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 06) tan x cot x Bài 1. a) TËp x¸c ®Þnh cña hµm sè y . 1 sin 2x b) Vẽ đồ thị hàm số y cos2x , từ đó hãy suy ra đồ thị hàm số y cos2x . Bài 2. Giải các phương trình sau đây: a) 3 cot 2x 1 0 . b) sin 3x cos 2x 0 . 3 4 3 2 x 2 3 c) 4sin 3 cos2x 1 2cos x . d) 3 tan 2x 2sin 2x 0 2 4 3 sin x tan x e) 2sin3 x cos2x cos x 0 . f) 2cos x 2 . tan x sin x ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 07) x3 sin x Bài 1. a) XÐt tÝnh ch½n lÎ cña hµm sè y f (x) . cos2x 2 b) T×m GTLN và GTNN cña hµm sè y f (x) 2cos x 1. 4 Bài 2. Giải các phương trình sau đây: 2 x a) cos 3x . b) 3tan 3 , x 0;2 . 6 2 2 1 c) sin x(1 sin x) cos x(cos x 3) . d) cos4 x sin4 x sin xcos x . 2 e) tan3x tan x 2 sin 4x sin 2x . f) tan 2x cot x 8cos2 x . ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 08) 1 tan x Bài 1. a) XÐt tÝnh ch½n lÎ cña hµm sè y f (x) . 1 tan x b) Tìm tËp gi¸ trÞ cña hµm sè y 1 2 sin3x . Bài 2. Giải các phương trình sau đây: a) 2cos x 3 0, x (0;2 ) . b) 3tan2 x 2 3 tan x 3 0 . 1 c) cos4 x sin4 x sin 2x . d) sin2 x 3cos2 x 3sin 2x 1. 3 3 3 2 2 e) sin x cos x cos2x 2cos x sin x . f) 2sin x 2sin x tan x . 4 GV: NGUYỄN THỊ THANH HẢI
  3. ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 09) 1 Bài 1. a) TËp x¸c ®Þnh cña hµm sè y tan 2x . cos x 1 b) T×m GTLN và GTNN cña hµm sè y f (x) . 3 4sin2 xcos2 x Bài 2. Giải các phương trình sau đây: 3 2sin x 3 a) tan 3x 300 . b) 0 . 3 2cos x 1 2 2 c) cos2x sin x 0, x 0;2 . d) 2cos x 3sin 2x sin x 1. 1 3 (1 2sin x)cos x e) 4 . f) 3 . cos x sin x (1 2sin x)(1 sin x) ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 10) sin x cos x Bµi 1. Cho hµm sè y f (x) . 1 cos x 1 sin x a) T×m tËp x¸c ®Þnh vµ xÐt tÝnh ch½n lÎ cña hµm sè y f (x) . b) T×m c¸c gi¸ trÞ lín nhÊt vµ nhá nhÊt cña hµm sè trªn 0; . 2 Bµi 2. Giải các phương trình sau đây a) 2cos x 1 0 b) 3cos x 3 0 3 c) 3 cos2x sin 2x 1. d) sin2x – 8sinxcosx + 7cos2x = 0. 1 e) sin 3xsin 5x sin 4xsin 6x f) cot 2x tan x . 2sin xcos2 x ĐỀ KIỂM TRA CUỐI CHƯƠNG I – 11 (Đề số 11) Bài 1: 2cos x 1 1) Tìm tập xác định của hàm số y 2.sin x 1 2) Tìm giá trị lớn nhất của hàm số y 2 cos3x 3sin3x . 3) Xét tính chẵn – lẻ của hàm số y sin3x.sin x 2sin x .sin x . 2 Bài 2: 2 2 1) Giải phương trình: 4sin x 4sin x.cos x 2cos x 1. 2) Cho phương trình: 2cos2x 2(1 3)cos x 2 m 0 , m là tham số. a/ Giải phương trình khi m 3 . 4 b/ Tìm m để phương trình có ba nghiệm phân biệt trong ; . 3 3 2 x x 3 3) Tìm nghiệm trong  2 ; 1 của phương trình: x (x 1)sin 6 2 GV: NGUYỄN THỊ THANH HẢI