Đề luyện thi học sinh giỏi môn Toán Lớp 8 năm 2016 - Đề 4 (Có đáp án)
Bạn đang xem tài liệu "Đề luyện thi học sinh giỏi môn Toán Lớp 8 năm 2016 - Đề 4 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_luyen_thi_hoc_sinh_gioi_mon_toan_lop_8_nam_2016_de_4_co_d.doc
Nội dung text: Đề luyện thi học sinh giỏi môn Toán Lớp 8 năm 2016 - Đề 4 (Có đáp án)
- Câu 1 a) Phân tích đa thức sau thành nhân tử x2 2xy y2 4x 4y 5 b) Chứng minh n N * thì n3 n 2 là hợp số. c) Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ. Câu 2 x 1 x 2 x 3 x 2016 a) Giải phương trình 2016 2016 2015 2014 1 b) Cho a2 b2 c2 a3 b3 c3 1 . Tính S a2 b2014 c2015 Câu 3 a) Tìm giá trị nhỏ nhất của biểu thức A 2x2 3y2 4xy 8x 2y 18 b) Cho a; b; c là ba cạnh của tam giác. ab bc ac Chứng minh a b c a b c a b c a b c Câu 4. Cho hình vuông ABCD có cạnh bằng a. Gọi E; F; G; H lần lượt là trung điểm của các cạnh AB, BC; CD; DA. M là giao điểm của CE và DF. a) Chứng minh: Tứ giác EFGH là hình vuông. b) Chứng minh DF CE và MAD cân. c) Tính diện tích MDC theo a. Bài tập tương tự câu 1b) 1. Tìm số tự nhiên n để n4 4 là số nguyên tố. 2 2. Cho biểu thức x2 8 36 . Tìm số tự nhiên n để biểu thức trên là số nguyên tố
- Câu Ý Nội dung Điể m a. 1 = (x - y)2 +4(x - y) - 5 = (x - y)2 + 4(x - y)2 + 4 -9 0.5 điểm = (x - y + 2)2 - 32 = ( x - y + 5)(x - y -1) 0,5 b. 1 Ta có: n3 + n + 2 = n3 + 1+ n+1= (n + 1)( n2 - n + 1) + (n + 1) 0.25 điểm =(n+1)( n2 - n + 2) 0,25 Câu 1 n N * 2 3 3 Do nên n + 1 > 1 và n - n + 2 >1 Vậy n + n + 2 là hợp số 0.5 2 2 điểm c. 1 Gọi hai số lần lượt là a và (a+1) 0.25 điểm Theo bài ra ta có: a2 + (a + 1)2 + a2( a + 1)2 = a4 +2a3 + 3a2 + 2a + 1 0.25 = (a4 + 2a3 + a2) + 2(a2 + a) + 1 = (a2 + a)2 + 2(a + 1) + 1 0.25 = ( a2 + a + 1)2 là một số chính phương lẻ vì a2 + a = a(a + 1) là số chẵn a2 + a + 1 là số lẻ 0.25 a. Phương trình đã cho tương đương với: 1.5 x 1 x 2 x 3 x 2012 1 1 1 1 2012 2012 0.5 điểm 2012 2011 2010 1 0. 5 x 2013 x 2013 x 2013 x 2013 0 2012 2011 2010 1 0. 5 Câu 2 1 1 1 1 (x 2013)( ) 0 x = 2013 2 2012 2011 2010 1 điểm b. a2 + b2 + c2 = a3 + b3 + c3 = 1 a; b; c 1;1 0.5 3 3 3 2 2 2 2 2 2 0.25 điểm a + b + c - (a + b + c ) = a (a - 1) + b (b - 1) + c (c - 1) 0 a3 + b3 + c3 1 a;b;c nhận hai giá trị là 0 hoặc 1 b2012 = b2; c2013 = c2; S = a2 + b 2012 + c 2013 = 1 0.25 a. 1 Ta có: A = 2(x2 + 2xy + y2) + y2 -8x -2y + 18 0.25 điểm A = 2[(x+y)2 - 4(x + y) +4] + ( y2 + 6y +9) + 1 0.25 A = 2(x + y - 2)2 + (y+3)2 + 1 1 0.25 Vậy minA = 1 khi x = 5; y = -3 0.25 b. vì a; b; c là ba cạnh của tam giác nên: a + b - c > 0; - a + b + c > 0; 0.5 a - b + c > 0. Đặt x = - a + b + c >0; y = a - b + c >0; z = a + b - c >0 điểm y z x z x y ta có: x + y + z = a + b + c; a ;b ;c 0.25 2 2 2 Câu 3 ab bc ac (y z)(x z) (x z)(x y) (x y)(y z) 1.5 điểm a b c a b c a b c 4z 4x 4y 1 xy yz xz 1 1 xy yz xz ( 3x 3y 3z) 3(x y z) (2 2 2 ) 4 z x y 4 2 z x y 1 y x z x y z z x y 3(x y z) ( ) ( ) ( ) 4 2 z x 2 z y 2 y x 0.25 1 3(x y z) x y z x y z 4 Mà x + y + z = a + b + c nên suy ra điều phải chứng minh
- Câu 4 Hình A E B 3.5 vẽ 0. điểm 5 đ 0.5 F H M N C D G a. Chứng minh: EFGH là hình thoi 0. 5 1.25 Chứng minh có 1 góc vuông. 0. 5 điểm Kết luận Tứ giác EFGH là Hình vuông 0.25 b. 1 VBEC VCFD(c.g.c) E·CB F·DC mà VCDF vuông tại C 0.25 điểm C·DF D· FC 900 D· FC E·CB 900 VCMF vuông tại M 0.25 Hay CE DF. Gọi N là giao điểm của AG và DF. Chứng minh tương tự: AG DF 0.25 GN//CM mà G là trung điểm DC nên N là trung điểm DM. Trong MAD có AN vừa là đường cao vừa là trung tuyến MAD 0.25 cân tại A. c. 0.75 CD CM VCMD : VFCD(g.g) 0.25 điểm FD FC 2 2 SVCMD CD CD 0.25 Do đó : SVCMD .SVFCD SVFCD FD FD 1 1 Mà : S CF.CD CD2 . VFCD 2 4 CD2 1 Vậy : S . CD2 . VCMD FD2 4 Trong VDCF theo Pitago ta có : 0.25 2 2 2 2 1 2 2 1 2 5 2 DF CD CF CD BC CD CD .CD . 2 4 4 CD2 1 1 1 Do đó : S . CD2 CD2 a2 VMCD 5 CD2 4 5 5 4 Bài tập tương tự câu 1b) 1. Tìm số tự nhiên n để n4 4 là số nguyên tố. 2 2. Cho biểu thức x2 8 36 . Tìm số tự nhiên n để biểu thức trên là số nguyên tố 1. Ta có 2 2 n4 4 n2 4n2 4 4n2 n2 2 2n 2 n2 2n 2 n2 2n 2
- Vì n2 2n 2 n 1 2 1 1 với mọi số tự nhiên n, do đó để n4 4 là số nguyên tố thì n2 2n 2 1 n 1 2. Ta có 2 2 2 2 2 2 2 2 2 2 2 2 x 8 36 x 16x 64 36 x 20x 100 36x x 10 6x Lập luận tương tự như trên