Đề ôn vào Lớp 10 THPT môn Toán

docx 3 trang thaodu 6420
Bạn đang xem tài liệu "Đề ôn vào Lớp 10 THPT môn Toán", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_on_vao_lop_10_thpt_mon_toan.docx

Nội dung text: Đề ôn vào Lớp 10 THPT môn Toán

  1. Đề 6 (Đề bắt buộc) 1 1 1 Câu 1(2.0điểm). Cho biểu thức B= . với b>0 và b 1 b 1 b 1 b a) Rút gọn biểu thức B. b) Tìm các giá trị của b để B= 1. Câu 2(1,5 điểm). 2x 3y 1 a) Giải hệ phương trình sau: 3x y 7 b) Cho hàm số bậc nhất y = (n-1)x + 3 (n là tham số). Tìm các giá trị của n để hàn số đồng biến. Câu 3(2.0điểm). Cho phương trình x2 – 6x + n = 0 (1) (n là tham số). a) Giải phương trình (1) khi n = 5 b) Tìm n để phương trình (1) có hai nghiệm x1, x2 thoả mãn mãn 2 2 x1 1 x2 1 36 Câu 4(1.0điểm). Cho hai số thực không âm x, y thỏa mãn x y 1 . 1 Chứng minh rằng xy(x y)2 64 Câu 5(3.5điểm). Cho đường tròn tâm O ,bán kính R và N là một điểm nằm bên ngoài đường tròn. Từ N kẻ hai tiếp tuyến NA, NB với đường tròn (O) (A, B là hai tiếp điểm). Gọi E là giao điểm của AB và ON. a) Chứng minh tứ giác NAOB nội tiếp được trong một đường tròn. b) Tính độ dài đoạn thẳng AB và NE biết ON = 5cm và R = 3 cm. c) Kẻ ta Nx nằm trong góc ANO cắt đường tròn tại hai điểm phân biệt C và D ( C nằm giữa N và D). Chứng minh rằng N· EC O·ED
  2. Đề Toán chuyên (Dành cho các bạn chuyên Toán) 2 a a 2a - 3b 3b 2 a - 3b - 2a a Bài 1. (2,0 điểm)Cho biểu thức M = a 2 3ab a) Tìm điều kiện của a và b để M xác định và rút gọn M. 11 8 b) Tính giá trị của M khi a = 1 3 2 , b = 10 3 Bài 2. (2,0 điểm)Cho phương trình x3 – 5x2 + (2m + 5)x – 4m + 2 = 0, m là tham số. a) Tìm điều kiện của m để phương trình có ba nghiệm phân biệt x1, x2, x3. 2 2 2 b) Tìm giá trị của m để x1 + x2 + x3 = 11. Bài 3. (1,0 điểm) Cho số nguyên dương n và các số A = 414424 43 4 (A gồm 2n chữ số 4); B = 2n 814882 43 8 (B gồm n chữ số 8). Chứng minh rằng A + 2B + 4 là số chính phương n Bài 4. (4,0 điểm) Cho đường tròn (O), đường thẳng d cắt (O) tại hai điểm C và D. Từ điểm M tuỳ ý trên d kẻ các tiếp tuyếnMA và MB với (O) (A và B là các tiếp điểm). Gọi I là trung điểm của CD. a) Chứng minh tứ giác MAIB nội tiếp. b) Các đường thẳng MO và AB cắt nhau tại H. Chứng minh H thuộc đường tròn ngoại tiếp COD. c) Chứng minh rằng đương thẳng AB luôn đi qua một điểm cố định khi M thay đổi trên đường thẳng d. MD HA2 d) Chứng minh = MC HC2 Bài 5. (1,0 điểm) Cho ba số thực a, b, c > 0 thoả mãn a + b + c = 2013. a b c Chứng minh + + 1 . a + 2013a + bc b + 2013b + ca c + 2013c + ab Dấu đẳng thức sảy ra khi nào?