Đề thi thử vào Lớp 10 THPT môn Toán lần thứ 4 - Năm học 2019-2020 - Trường THCS và THPT Lương Thế Vinh

pdf 1 trang thaodu 5340
Bạn đang xem tài liệu "Đề thi thử vào Lớp 10 THPT môn Toán lần thứ 4 - Năm học 2019-2020 - Trường THCS và THPT Lương Thế Vinh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfde_thi_thu_vao_lop_10_thpt_mon_toan_lan_thu_4_nam_hoc_2019_2.pdf

Nội dung text: Đề thi thử vào Lớp 10 THPT môn Toán lần thứ 4 - Năm học 2019-2020 - Trường THCS và THPT Lương Thế Vinh

  1. KỲ THI THỬ VÀO LỚP 10 THPT Năm học 2019 – 2020 Môn thi: Toán TRƯỜNG THCS & THPT LƯƠNG THẾ VINH Ngày thi : 19- 05-2019 Thời gian làm bài : 120 phút ĐỀ THI THỬ LẦN 4 2 x 1 3x 4 4 x 2 x 3 1 Bài 1. (2 điểm) Cho A và B với x 0 , x x2 2xx 1 1 2 41x 4 a) Tính giá trị của biểu thức A tại x 25 b) Rút gọn biểu thức B c) Tìm m để có duy nhất một giá trị của x thỏa mãn (AB1)(x2)(1)34mxx Bài 2 (2 điểm) :Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để tiến tới kỉ niệm 30 năm ngày thành lập trường, hội cựu học sinh Lương Thế Vinh đã đăng kí một phòng tại trường để gặp mặt đại diện các khóa. Lúc đầu, phòng có 120 ghế được xếp thành từng dãy có số ghế trên mỗi dãy như nhau. Nhưng thực tế phải xếp thêm một dãy và mỗi dãy thêm hai ghế thì mới đủ chỗ cho 156 cựu học sinh về dự .Hỏi lúc đầu phòng có mấy dãy ghế và mỗi dãy có bao nhiêu ghế? Bài 3 (2 điểm): 17 xy x 1 3 1) Giải hệ phương trình: 3 23xy x 1 2) Cho parabol (P): yx2 và đường thẳng (d): yx(m2)3 5 a) Tìm tọa độ giao điểm của (d) và (P) khi m 2 b) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho trục Oy chia tam giác OAB thành hai phần có tỉ số diện tích bằng 3. Bài 4 (3,5 điểm): 1) Một hình trụ có chiều cao gấp ba lần đường kính đáy. Biết thể tích của nó bằng 162(cm) 3 . Hãy tính diện tích toàn phần của hình trụ đó. 2) Cho đường tròn (O;R) và điểm A cố định nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm). Gọi H là giao điểm của OA và BC, kẻ dây MN bất kì đi qua H với M thuộc cung nhỏ BC và BM < CM. a) Chứng minh tứ giác ABOC nội tiếp b) Chứng minh HM.HN = HB.HC và góc AMN = góc AON c) Xác định vị trí của dây MN để AB là tiếp tuyến của đường tròn ngoại tiếp tam giác AMN. Bài 5 ( 0,5 điểm): Cho x, y, z là các số thực thỏa mãn xyz 6 và xy yz zx 9 Chứng minh rằng (x 1) (y 2)24 (z 3) 88 Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: . Số báo danh: .Phòng thi