Đề thi tuyển sinh Lớp 10 THPT môn Toán - Năm học 2020-2021 - Sở giáo dục và đào tạo Nghệ An
Bạn đang xem tài liệu "Đề thi tuyển sinh Lớp 10 THPT môn Toán - Năm học 2020-2021 - Sở giáo dục và đào tạo Nghệ An", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_tuyen_sinh_lop_10_thpt_mon_toan_nam_hoc_2020_2021_so.docx
Nội dung text: Đề thi tuyển sinh Lớp 10 THPT môn Toán - Năm học 2020-2021 - Sở giáo dục và đào tạo Nghệ An
- SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NGHỆ AN NĂM HỌC 2020 – 2021 ĐỀ CHÍNH THỨC Môn thi: TOÁN Thời gian làm bài: 120 phút, không kể thời gian giao đề. Câu 1. (2,5 điểm) : 2 a) Tính A = 1 2 5 20 x 1 1 x 0 x 4 b) Rút gọn biểu thức B = . với và x 4 x 2 x 1 c) Tìm giá trị của tham số m để đường thẳng y = ( m2 + 1)x + m song song với đường thẳng y = 5x + 2 Câu 2. (2,0 điểm) a) Giải phương trình x2 - 5x + 6 = 0 2 b) Cho. phương trình x - 4x -3 = 0 có hai nghiệm phân biệt x1; x2. Không giải x 2 x 2 phương trình, hãy tính giá trị biểu thức T = 1 2 x2 x1 Câu 3. (1,5 điểm) Hưởng ứng phong trào toàn dân chung tay đẩy lùi đại dịch Covid-19, trong tháng hai năm 2020 , hai lớp 9A và 9B của một trường THCS đã nghiên cứu và sản xuất được 250 chai nước rửa tay sát khuẩn . Vì muốn tặng quà cho khu cách li tập trung trên địa bàn, trong tháng ba, lớp 9A làm vượt mức 25%, lớp 9B làm vượt mức 20%, do đó tổng sản phẩm của cả hai lớp vượt mức 22% so với tháng hai. Hỏi trong tháng hai , mỗi lớp đã sản xuất được bao nhiêu chai nước rửa tay sát khuẩn ? Câu 4. (3,0 điểm) Cho tứ giác ABCD (AD > BC) nội tiếp đường tròn tâm O đường kính AB. Hai đường chéo AD và BC cắt nhau tại E. Gọi H là hình chiếu của E trên AB. a) Chứng minh ADEH là tứ giác nội tiếp. b) Tia CH cắt đường tròn (O) tại điểm thứ hai là K. Gọi I là giao điểm của DK và AB. Chứng minh DI2 = AI . BI. c) Khi tam giác DAB không cân, gọi M là trung điểm của EB, tia DC cắt tia HM tại N. Tia NB cắt đường tròn ngoại tiếp tam giác HMB tại điểm thứ hai là F. Chứng minh F thuộc đường tròn (O) 2 2 2 2 x 2y xy 2 x 2x Câu 5. (1,0 điểm) Giải hệ phương trình: 2 2 2 3 4y ( y 1 1)(y x 3x 2)