Học Toán theo chuyên đề trọng tâm - Chương I: Hệ thức lượng trong tam giác vuông - Bài 1: Hệ thức lượng về cạnh và đường cao trong tam giác vuông

pdf 4 trang thaodu 3590
Bạn đang xem tài liệu "Học Toán theo chuyên đề trọng tâm - Chương I: Hệ thức lượng trong tam giác vuông - Bài 1: Hệ thức lượng về cạnh và đường cao trong tam giác vuông", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfhoc_toan_theo_chuyen_de_trong_tam_chuong_i_he_thuc_luong_tro.pdf

Nội dung text: Học Toán theo chuyên đề trọng tâm - Chương I: Hệ thức lượng trong tam giác vuông - Bài 1: Hệ thức lượng về cạnh và đường cao trong tam giác vuông

  1. CHƯƠNG I – HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG BÀI 1 – HỆ THỨC LƯỢNG VỀ CẠNH VÀ ĐƯỜNG CAO TRONG TAM GIÁC VUÔNG I – TÓM TẮT LÝ THUYẾT Cho tam giác ABC vuông tại A, đường cao AH. Ta có các hệ thức sau: AB2 = BH.BC; A AC2 = CH.BC; AB.AC = BC.AH; HA2 = HB.HC; 111 222 ; AHABAC B C 2 2 2 H BC = AB + AC . (Định lí Pitago) II – CÁC DẠNG BÀI TẬP TRỌNG TÂM Dạng 1: Tìm độ dài các đoạn thẳng trong tam giác vuông A) Phương pháp giải Cho tam giác ABC vuông tại A, đường cao AH. Nếu biết độ dìa hai trong sáu đoạn thẳng AB, AC, BC, HA, HB, HC thì ta luôn tính được độ dài bón đoạn thẳng còn lại. B) Bài tập 1A. Tính x, y trong mỗi hình vẽ sau: A A 8 5 7 6 x B C B x H y C H y Hình 1 Hình 2 thaytoan.edu.vn HỌC TOÁN 9 THEO CHUYÊN ĐỀ TRỌNG TÂM
  2. 1B. Tìm x, y trong các hình vẽ dưới đây: A A y y x 5 B 4 H x C B 1 H 4 C Hình 1 Hình 2 2A. Cho tam giác ABC vuông tại A, đường cao AH. a) Cho biết AB = 3cm, AC = 4cm. Tính độ dài các đoạn thẳng BH, CH, AH và BC; b) Cho biết BH = 9cm, CH = 16cm. Tính độ dài các đoạn thẳng AB, AC, BC, và AH. 2B. Cho tam giác ABC vuông tại A, đường cao AH. a) Cho biết AB = 3cm, BC = 5cm. Tính độ dài các đoạn thẳng BH, CH, AH và AC; b) Cho biết AH = 60cm, CH = 144cm. Tính độ dài các đoạn thẳng AB, AC, BC và BH. 3A. Cho tam giác ABC vuông tại A, AH vuông góc với BC (H thuộc BC). Biết AB : AC = 3 : 4 và BC = 15cm. Tính độ dài các đoạn thẳng BH và HC. AB 5 3B. Cho tam giác ABC vuông tại A, đường cao AH. Biết và BC = 122cm. Tính độ dài các đoạn AC 6 thẳng BH, CH. Dạng 2: Chứng minh các hệ thức liên quan đến tam giác vuông A) Phương pháp giải B1: Chọn các tam giác vuông thích hợp chứa các đoạn thẳng có trong hệ thức; B2: Tính các đoạn thẳng đó nhờ hệ thức về cạnh và đường cao; B3: Liên kết các giá trị trên để rút ra hệ thức cần chứng minh. B) Bài tập 4A. Cho tam giác CDE nhọn, đường cao CH. Gọi M, N theo thứ tự là hình chiếu của H lên CD, CE. Chứng minh: a) CD.CM = CE.CN b) Tam giác CMN đồng dạng với tam giác CED. 4B. Cho tam giác ABC có ba góc nhọn và AH là đường cao. a) Chứng minh: AB2 + CH2 = AC2 + BH2; b) Vẽ trung tuyến AM của tam giác ABC, chứng minh: thaytoan.edu.vn HỌC TOÁN 9 THEO CHUYÊN ĐỀ TRỌNG TÂM
  3. BC2 b1. ABAC2AM222 ; b2. AC2 – AB2 = 2BC.HM (Với AC > AB). 2 5A. Cho hình bình hành ABCD có góc A nhọn. Gọi I, K lần lượt là hình chiếu của B, D trên đường chéo AC. Gọi M, N là hình chiếu của C trên các đường thẳng AB, AD. Chứng minh: a) AK = IC; b) Tứ giác BIDK là hình bình hành; c) AC2 = AD.AN + AB.AM. 5B. Cho hình thoi ABCD có hai đường chéo cắt nhau tại O. Cho biết khoảng cách từ O tới mỗi cạnh hình 1 1 1 thoi là h, AC = m, BD = n. Chứng minh rằng: . m n222 4h III – BÀI TẬP RÈN LUYỆN 6. Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB = 4cm, AC = 7,5cm. Tính độ dài đoạn thẳng AH và diện tích tam giác ABC 7. Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm. Tính AB, AC, BC, HC; b) Biết AB = 6cm, BH = 3cm. Tính AH và tính chu vi của các tam giác vuông trong hình. 8. Cho tam giác ABC vuông tại A, đường cao AH. Tính diện tích tam giác ABC, biết AH = 12cm, BH = 9cm. 9. Cho tam giác ABC, biết BC = 7,5cm, AC = 4,5cm, AB = 6cm. a) Tính đường cao AH của tam giác ABC. b) Tính độ dài BH, CH. 10. Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB : AC = 3:4 và AH = 6cm. Tính độ dài các đoạn thẳng BH và CH. 11. Cho tam giác vuông với các cạnh góc vuông là 7 và 24. Kẻ đường cao tương ứng với cạnh huyền. Tính diện tích hai tam giác vuông tạo thành. 12. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB : AC = 5 : 7. AH = 5cm. Tính độ dài doạn thẳng HB và HC. 13. Cho ABCD là hình thang vuông tại A và D. Đường chéo BD vuông góc với BC. Biết AD = 12cm, DC = 25cm. Tính độ dài AB, BC và BD. 14. Cho hình chữ nhật ABCD có AB = 8cm, BC = 15cm. a) Tính độ dài đoạn thẳng BD; b) Vẽ AH vuông góc với BD tại H. Tính độ dài đoạn thẳng AH; c) Đường thẳng AH cắt BC và DC lần lượt tại I và K. Chứng minh: AH2 = HI.HK. thaytoan.edu.vn HỌC TOÁN 9 THEO CHUYÊN ĐỀ TRỌNG TÂM
  4. 15. Cho hình thang ABCD vuông tai A và D. Cho biết AB = 15cm, AD = 20cm, các đường chéo AC và BD vuông góc với nhau tại O. Tính: a) Độ dài các đoạn thẳng OB và OD; b) Độ dài đoạn thẳng AC; c) Diện tích hình thang ABCD. 16. Cho tam giác ABC vuông tại A. Đường cao AH, kẻ HE, HF lần lượt vuông góc với AB, AC. Chứng minh: 2 E B A B 2 a) ; b) BC.BE.CF = AH . F C A C 17. Cho tam giác ABC cân tại A có AH và BK là hai đường cao. Kẻ đường thẳng vuông góc BC tại B cắt tia CA tại D. Chứng minh: 111 a) BD = 2AH; b) . BKBC4HA222 thaytoan.edu.vn HỌC TOÁN 9 THEO CHUYÊN ĐỀ TRỌNG TÂM