Sáng kiến kinh nghiệm: Sử dụng máy tính bỏ túi để giải đề thi Tốt nghiệp môn Toán THPT - Hà Văn Thọ
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm: Sử dụng máy tính bỏ túi để giải đề thi Tốt nghiệp môn Toán THPT - Hà Văn Thọ", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- sang_kien_kinh_nghiem_su_dung_may_tinh_bo_tui_de_giai_de_thi.doc
Nội dung text: Sáng kiến kinh nghiệm: Sử dụng máy tính bỏ túi để giải đề thi Tốt nghiệp môn Toán THPT - Hà Văn Thọ
- MỤC LỤC Mục Nội dung Trang 1 Đặt vấn đề 1 2 Giải quyết vấn đề 2 2.1 Cơ sở lý luận 2 2.2 Thực trạng của vấn đề 3 2.3 Các biện pháp đã tiến hành để giải quyết vấn đề 4 2.3.1 Sơ lược về máy tính bỏ túi 4 2.3.2 Hướng dẫn học viên sử dung MTBT làm bài thi môn toán 7 A Ứng dụng vào việc giải phương trình 7 B Ứng dụng đạo hàm tìm cực trị của hàm số 9 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một C 9 đoạn D Tích phân 10 E Số phức 11 2.3.3 Hướng dẫn học viên sử dung MTBT làm đề thi tốt nghiệp 12 môn toán năm 2013 – GDTX 2.4 Hiệu quả của sáng kiến kinh nghiệm 16 3 Kết luận 17 1
- 1. Đặt vấn đề Trong những năm gần đây khoa học trên thế giới phát triển rất mạnh mẽ và được ứng dụng rất nhiều trong đời sống. Trong dạy học việc ứng dụng khoa học cũng rất phổ biến cụ thể như giải toán có sự trợ giúp của máy tính cầm tay, trong giáo dục đã xem việc ứng dụng này là một sân chơi bổ ích cho các em học viên cấp THPH thông qua các cuộc thi giải toán bằng máy tính bỏ túi. Cùng với việc đổi mới PPDH nhằm mục đích nâng cao chất lượng dạy học và kích thích tính ham muốn học hỏi tìm tòi khám phá trong học tập và áp dụng vào trong thực tế cuộc sống, việc hướng dẫn học viên GDTX nói riêng và học viên THPT nói chung sử dụng máy tính bỏ túi để hỗ trợ tính toán là việc làm cần thiết trong dạy học. Do tính hữu dụng và thiết thực của MTBT và điều kiện kinh tế xã hội cho phép, hoạt động ngoạii khoá toán học nói chung và ngoại khoá MTBT nói riêng trong các nhà trường nhằm mục đích: - Phát triển tư duy thuật toán ở Hv, hợp lí hoá và tối ưu hoá các thao tác, hỗ trợ đoán nhận kết quả bằng các phép thử, để kiểm tra nhanh kết quả tính toán theo hướng hình thành các phẩm chất của người lao động có kĩ năng tính toán. - Tạo ra môi trường và điều kiện cho hoạt động ngoại khoá toán phong phú ở bậc học THPT. Nhờ có MTBT mà nhiều vấn đề được coi là khó đối với chương trình môn toán đã được giảm nhẹ đi rất nhiều. Ví dụ như: - Bài toán về tập hợp và mệnh đề; số gần đúng sai số; hàm số bậc nhất và hàm số bậc hai; hệ phương trình bậc nhất, bậc hai; hệ thức lượng trong tam giác; phương pháp tọa độ trong mặt phẳng ở lớp 10. -Bài toán về phương trình lượng giác; dãy số - cấp số công – cấp số nhân; giới hạn; đạo hàm ở lớp 11. -Bài toán về Khảo sát hàm số; phương trình mũ và phương trình lôgarit, tích phân; số phức; phương pháp tọa độ trong không gian ở lớp 12. Vấn đề tổ chức ngoại khoá chuyên đề giải toán trên MTBT cho Hv là một vấn đề cần thiết để Hv có thể sử dụng MTBT như một phương tiện, một công cụ, 2
- đồ dùng học tập hữu dụng trong các tình huống có liên quan đến tính toán nhằm giảm thời gian tính toán, tăng thêm thời gian để Hv luyện tập phát triển tư duy thật toán. Tuy nhiên việc hướng dẫn Hv sử dụng MTBT phải hết sức chú trọng đến nội dung chương trình bài học của Hv trên lớp, chương trình môn toán chính khoá cung cấp kiến thức kĩ năng đến mức nào thì chúng ta cập nhật hướng dẫn giải toán trên MTBT đến mức ấy, hình thành kĩ năng sử dụng thành thạo MTBT. Tránh việc nôn nóng hướng dẫn vượt mức hoặc hướng dẫn cho hết trách nhiệm. Xuất phát từ những mục đích ý nghĩa nêu trên từ nhiều năm nay thông qua các tiết ôn tập, các bài thực hành, các buổi ngoại khoá, ôn thi tôi đã nghiên cứu học hỏi để tìm ra những phương pháp hướng dẫn Hv sử dụng MTBT hỗ trợ tính toán một cách có hiệu quả phục vụ cho học tập. Xuất phát từ thực tế chất lượng học tập trong trường. Các em rỗng kiến thức căn bản từ lớp dưới, cùng với thực trạng phổ cập THCS. Các em gặp rất nhiều khó khăn khi tiếp thu kiến thức mới. Với những lý do trên, cùng với mong muốn nâng cao chất lượng học tập của học viên tôi chọn chuyên đề: “ Sử dụng máy tính bỏ túi để giải đề thi tốt nghiệp môn toán THPT” ý tưởng của đề tài này là đưa ra phương pháp, cách tiến hành làm bài thi tốt nghiệp có sử dụng MTBT làm công cụ hỗ trợ. 2. Giải quyết vấn đề 2.1. Cơ sở lý luận Trong dạy học bộ môn toán ở trường Trung tâm GDTX ngoài việc giúp cho học viên nắm vững kiến thức cơ bản, giáo dục chính trị tư tưởng, phẩm chất đạo đức cho các em, người giáo viên còn phải giúp cho học viên phát triển năng lực nhận thức. Đối với bộ môn Toán, kĩ năng tính toán nhanh, chậm, mức độ chính xác đều có những ảnh hưởng nhất định đến kết quả của bài toán. Ở một số bài toán, dù các bước thực hiện học viên đều nắm và nhớ được, nhưng do kĩ năng tính toán sai nên dẫn đến kết quả không chính xác, mặc dù các bước trình bày bài giải của các em đều đúng. Vì thế, bản thân tôi nhận thấy cần phải hướng dẫn cho học 3
- viên biết sử dụng máy tính cầm tay (MTBT) casio fx 500 MS hoặc casio fx 570 MS trong việc giải toán cho chính xác và nhanh. 2.2. Thực trạng của vấn đề * Qua trực tiếp giảng dạy và trao đổi trực tiếp với học viên tôi thấy có một số vấn đề sau: Trong thực tế khi giảng dạy cho Hv một số các bài toán đòi hỏi phải có kĩ năng tính toán hoặc suy luận ở mức độ cao và yêu hoàn thành trong khuôn khổ thời gian hạn hẹp thì phần lớn Hv thường có tâm lí căng thẳng hoặc không có hứng thú học tập, bởi lí do là các em tính toán chậm, khi tính toán thường sai kết quả hoặc không biết tính toán, chẳng hạn tìm kết quả của phép toán khai căn 3 8 hoặc tính f (4) = ? f (- 4) = ? khi biết f (x) = x3 - 3x2 - 9x +35 . Vì vậy để giúp Hv tính toán nhanh và đơn giản hơn và đỡ lãng phí thời gian học tập, đồng thời kích thích sự tập trung cao độ của Hv vào việc giải toán ta nên hướng dẫn Hv cách sử dụng MTBT làm công cụ hỗ trợ các hoạt động tính toán trong khi học. Kết quả nghiên cứu qua các bài kiểm tra trong học kỳ I của học viên hai lớp 12a1 và 12a2 khi học viên chưa được hướng dẫn sử dụng MTBT vào việc giải toán trong năm học 2013 – 2013 như sau: Tổng số học Kết quả viên được Giỏi Khá Trung bình Yếu kiểm tra SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ 71 0 0% 15 21.1% 40 56.3% 16 22.6% * Nguyên nhân của kết quả thấp là do: Học viên không biết tính toán, tính toán chậm, kết quả nhận được thường không chính xác. Học viên gặp rất nhiều khó khăn trong việc tìm ra phương pháp giải quyết bài toán được đưa ra. Học viên không hiểu bản chất của vấn đề, chưa có phương pháp học tập bộ môn. 4
- Học viên tính toán rất yếu, kỹ năng giải không có hoặc có nhưng chậm hoặc nhầm. Số lượng bài tập, dạng bài tương đối nhiều biến đổi giữa chúng, học viên chưa nắm rõ mối quan hệ tương quan để giải quyết vấn đề. Đa số Hv chưa có MTBT hoặc có nhưng chưa có kỹ năng và chưa được thực hành nhiều. Học viên chưa biết sử dụng MTBT làm công cụ hỗ trợ trong quá trình giải toán. * Một số vấn đề đặt ra Làm thế nào để học viên phân tích được bài toán, mục đề ra của bài toán là gì? áp dụng tính chất nào, công thức nào có liên quan để vận dụng giải. Trên cơ sở biết vận dụng làm thế nào để học viên có thể tính toán tìm ra kết quả chính xác nhất theo yêu cầu của đề bài. Sử dụng MTBT vào việc dạy học bộ môn Toán là một trong những biện pháp tích cực đối với việc giải toán của học viên nhằm kiểm tra kết quả đã thực hiện, và so sánh các kết quả với nhau để từ đó tìm ra cách giải đúng hơn, hoàn thiện hơn cho bài toán. Tùy theo sự hứng thú của học viên mà giáo viên có thể tổ chức ngoại khóa để mở rộng và giúp học viên có sự nhận thức phong phú hơn đối với các dạng bài tập có thể giải được, tìm được dựa vào MTBT. 2.3. Các biện pháp đã tiến hành giải quyết vấn đề 2.3.1. Sơ lược về máy tính bỏ túi . 5
- A. Giới thiệu một số các phím ghi trên máy tính a . Các phím chung ON mở máy AC xoá dữ liệu hiện thời OF tắt máy Replay di chuyển con trỏ 0 1 2 9 . Các phím ghi số +, - , x , = các phép tính cơ bản DEL xoá kí tự vừa ghi nhầm INS ghi chèn thêm kí tự b. Các phím nhớ RCL gọi số nhớ Sto gán số nhớ M+ cộng thêm vào số nhớ M- trừ bớt đi ở số nhớ M số nhớ có cộng thêm hay trừ bớt đi do ấn M+, M- A, B, C, D, E, F, X, Y các ô ghi số nhớ 6
- Ans gọi lại kết quả vừa tính (do ấn dấu =, StoA,StoB , M+, M- ) CLR menu xoá:Scl( xoá thống kê),Mode(mode),All(chỉnh máy,reset lại) ; dấu cách hai biểu thức c. Các phím đặc biệt Shift Ấn kèm khi sử dụng các phím có chữ màu vàng ghi phía trên các phím nổi MODE chọn chức năng (chương trình) ( mở ngoặc ) đóng ngoặc EXP nhân với luỹ thừa của 10 số pi o’’’ nhập số đo độ phút giây ALPHA ấn trước khi gọi các phím chữ màu đỏ DRG đổi đơn vị giữa độ, rađian, grad Rnđ làm tròn giá trị d. Các phím hàm Sin sin Cos cosin Tan tang Sin-1 arcsin Tan-1 arctang Cos-1 arccos 10x hàm mũ cơ số 10 căn bậc hai căn3 bậc ba x 2 bình phương x 3 lập phương b ac , d/c ghi hỗn số, phân số x-1 nghịch đảo x! giai thừa 7
- x căn bậc x % phần trăm * Chú ý khi sử dụng MTBT Ấn nhẹ nhàng bàn phím bằng các đầu ngón tay ở mỗi lần ấn phím, không được đùng các vật khác để ấn phím Tắt máy: ấn phím Shift đồng thời với phím OF Mở máy ấn phím ON Các phím chữ vàng được ấn sau Shift Các phím chữ đỏ được ấn sau ALPHA B. Các MODE Trước khi tính toán phải chọn đúng MODE dưới đây 2.3.2. Hướng dẫn học viên sử dung MTBT làm bài thi môn toán A. Ứng dụng vào việc giải phương trình: I./ Phương trình bậc hai, bậc ba một ẩn số: Dùng chức năng có sẵn của máy tính. Ví dụ: Giải các phương trình: a) x2 - x – 12 = 0 b) 2x3 + 3x2 – 3x – 2 = 0 - Thực hiện câu a : 8
- Ấn MODE đến khi màn hình xuất hiện chọn số 1 màn hình xuất hiên ấn REPLAY sang phải ấn 2 và nhập hệ số Nhập hệ số a : 1 Nhập hệ số b: -1 Nhập hệ số c: -12 Ấn dấu = để được kết quả x = - 3 ấn tiếp dấu = cho kết quả x = 4 Vậy phương trình có hai nghiệm: x = - 3 hoặc x = 4 - Học viên thường mắc sai lầm khi nhập các hệ số đối với những phương trình bậc hai mà khuyết các hệ số như : 2x2 - 4 = 0, x2 - 4 = 0 - Lưu ý cho học viên dạng tổng quát của phương trình bậc hai đối với các hệ số a, b, c như sau: ax2 +bx+c = 0 * Thực hiện câu b Ấn MODE ba lần màn hình xuất hiện chọn số 1 màn hình xuất hiên ấn REPLAY sang phải ấn 3 và nhập hệ số Nhập hệ số a : 2 Nhập hệ số b: 3 Nhập hệ số c: -3 Nhập hệ số d: -2 Ấn dấu = để được kết quả x = 1; ấn tiếp dấu = cho kết quả x = -2; ấn tiếp dấu = cho kết quả x= 0,5 Vậy phương trình có ba nghiệm: x = 1; x = -2; x= 0,5 9
- - Học viên thường mắc sai lầm khi nhập các hệ số đối với những phương trình bậc ba mà khuyết các hệ số như : 2x3 - 4x2 +1 = 0, x3 - 8 = 0 - Lưu ý cho học viên dạng tổng quát của phương trình bậc hai đối với các hệ số a, b, c như sau: ax3 +bx2 +cx+d = 0 II./ Phương trình bậc 4, bậc 5, phương trình lôgarit , phương trình mũ, phương trình căn thức Dùng chức năng lệnh shift SOLVE để dò tìm các nghiệm, có thể kết hợp với phím MODE 7 để dự đoán và tìm hết các nghiệm của phương trình đó. Ví dụ: Giải phương trình sau kết quả lấy với 4 chữ số thập phân: a) 2x + 1 + 2x - 1 + 2x = 28 Thực hiện: nhập 2x+1 + 2x-1 + 2x = 28 ấn đồng thời shift SOLVE chọn x = 4 ấn “ = ” ta được kết quả 3 kết hợp phím MODE 7 ta thấy phương trình có một nghiệm x = 3 b) log(x2 - 6x +7) = log(x - 3) Thực hiện : nhập log(x2 - 6x +7) = log(x - 3) Ấn shift SOLVE chọn x = 4 ấn “ = ” ta được kết quả 5, ấn shift SOLVE chọn giá trị x kết hợp phím MODE 7 ta thấy phương trình có một nghiệm x = 5 B./ Ứng dụng đạo hàm tìm cực trị của hàm số: Ví dụ: Tìm cực trị của hàm số: y = 2 +3x - x3 . Thực hiện: Tập xác định D = R éx = - 1 éy(- 1) = ? y/ = 0 Û ê Þ ê ê ê ëx =1 ëy(1) = ? Nhập hàm ấn phím CALC nhập (-1) cho kết quả bằng 0; ấn phím CALC nhập 1 cho kết quả bằng 4 éx = - 1 éy(- 1) = 0 Vậy y/ = 0 Û ê Þ ê ê ê ëx =1 ëy(1) = 4 Bảng biến thiên: 10
- x -¥ -1 1 + ¥ y’ - 0 + 0 - y +¥ 4 0 - ¥ Vậy hàm số đạt cực tiểu tại x = -1 ; yct = 0; đạt cực đại tại x = 1; ycđ = 4 * Học viên thường dùng phím 1 để thay cho (-)1 nên kết quả nhận được thường bị sai. C./ Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn VD. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x3 - 3x2 - 9x +35 trên đoạn [0; 5] ? Giải y' = 3x2 - 6x - 9 éx = - 1Ï 0;5 y' = 0Û 3x2 - 6x - 9 = 0Û ê [ ] ê ëx = 3Î [0;5] f (5) = 40; f (0) = 35; f (3) =8 Max f (x) = 40; Min f (x) =8 [0;5] [0;5] Sử dụng MTBT giải phương trình y' = 0Û 3x2 - 6x - 9 = 0 ấn MODE đến khi màn hình xuất hiện chọn số 1 màn hình xuất hiên ấn REPLAY sang phải ấn 2 và nhập số Nhập hệ số a : 3; Nhập hệ số b: -6; Nhập hệ số c: -9 Ấn dấu = để được kết quả x = -1 và x = 3 Sử dụng MTBT tính f (5) = ? f (0) = ? f (3) = ? 11
- Nhập hàm số ấny = phímx3 - 3 CALCx2 - 9x +35 nhập 5 cho kết quả bằng 40; ấn phím CALC nhập 3 cho kết quả bằng 8; ấn phím CALC nhập 0 cho kết quả bằng 35. D./ Tích phân: Dùng chức năng có sẵn tính trực tiếp. Ví dụ: Tính các tích phân sau: 2 2 2 3 2 1 4 2 3 1 2 2 16 34 òx(x +1) dx =ò(x +2x + x)dx = ( x + x + x ) 0 = 4 + +2 = 0 0 4 3 2 3 3 Giải bằng MTBT 2 òx(x +1)2 dx ấn nhập hàm số x(x +1)2 ấn phím cận trên 2 cận 0 dưới 0 và ấn phím cho kết quả E./ Số phức: Ấn MODE chọn 2 để tính toán về số phức * Chú ý: - ấn SHIFT và ấn ENG cho ta số i - ấn SHIFT và Re-lm cho ta phần ảo Ví dụ: Tính giá trị biểu thức: + A = (3 + 2i) + (5 + 8i) B = 1 i 2 - 3i 1 i + 2 3 C= (4-3i)++ D = (1 i) (2i) 2+i - 2 +i Thực hiện: MODE chọn số 2 Nhập ( 3 + 2i ) + ( 5 + 8i) ấn dấu “ = ” ta được kết quả: 8, ấn SHIFT và Re- lm cho ta phần ảo 10i Vậy A = (3 + 2i) + (5 + 8i) = 8 + 10i 12
- + Nhập 1 i màn hình xuất hiện ấn dấu “ = ” ta 2 - 3i 1 5 được kết quả - , ấn SHIFT và Re-lm cho ta phần ảo i 13 13 1+i 1 5 Vậy = + i 2 - 3i 3 13 1 i Nhập (4-3i)++ , ấn dấu “ = ” ta được kết quả , 2+i ấn SHIFT và Re-lm cho ta phần ảo 1+i 23 14 Vậy (4-3i)+ = - i 2+i 5 5 (1+i)2 (2i)3 32 16 Tương tự nhập ấn dấu “ = ” ta được kết quả - i - 2 +i 5 5 2.3.3. Hướng dẫn học viên sử dung MTBT làm đề thi tốt nghiệp môn toán năm 2013 – GDTX. A. Đề thi tôt nghiệp năm 2013 môn toán – GDTX. 13
- B. Hướng dẫn giải có sử dụng MTBT làm công cụ hỗ trợ. Câu 1. 1. Khảo sát dự biến thiên và vẽ đồ thị (C) hàm số đã cho 14
- - Sử dụng MTBT để tìm khoảng đồng biến, nghịch biến. Giải phương trình -6x2 +6x = 0 Ấn MODE đến khi màn hình xuất hiện chọn số 1 màn hình xuất hiên ấn REPLAY sang phải ấn 2 và nhập hệ số Nhập hệ số a : -6 Nhập hệ số b: 6 Nhập hệ số c: 0 Ấn dấu = để được kết quả x = 0 ấn tiếp dấu = cho kết quả x = 1 Vậy phương trình có hai nghiệm: x = 0 hoặc x = 1 Hàm số đồng biến trên khoảng (-¥ ; 0) và (1 ; +¥ ) Hàm số nghịch biến trên khoảng (1; 1) - Sử dụng MTBT để tìm cực trị éx = 0 éy(0) = ? y/ = 0 Û ê Þ ê ê ê ëx =1 ëy(1) = ? Nhập hàm ấn phím CALC nhập 0 cho kết quả bằng 1; ấn phím CALC nhập 1 cho kết quả bằng 2 éx = 0 éy(- 1) =1 Vậy y/ = 0 Û ê Þ ê ê ê ëx =1 ëy(1) = 2 Hàm số đạt cực đại tại điểm (1 ; 2) Hàm số đạt cực tiểu tại điểm (0 ; 1) - Sử dung MTBT để tìm tọa độ giao điểm. 15
- Nhập hàm ấn phím CALC nhập 0 cho kết quả bằng 1; ấn phím CALC nhập 1 cho kết quả bằng 2; ấn phím CALC nhập 2 cho kết quả bằng -3. Vậy tọa độ các giao điểm (0 ; 1), (1 ; 2), (2 ; -3). 2.Viết phương trình tiếp tuyến với (C) tại điểm có hoành độ bằng 2 - Sử dụng MTBT tính y(2) Nhập hàm ấn phím CALC nhập 2 cho kết quả bằng -3. Vậy y(2) = -3 - Sử dụng MTBT tính y’(2) Nhập hàm ấn phím CALC nhập 2 cho kết quả bằng -12. Vậy y’(2) = -12 Vậy phương trình tiếp tuyến cần viết có dạng: y = -12(x-2) - 3 Câu 2. 1. Sư dụng MTBT tìm kết quả của tích phân 1 3 1 4 2 1 1 I =ò(x - 2x +1)dx = ( x - x + x ) 0 = 0 4 4 Giải bằng MTBT ấn nhập hàm số x3 - 2x +1 ấn phím cận trên 1 cận dưới 0 và ấn phím cho kết quả 2. Sư dụng MTBT tìm GTLN và GTNN 9 y '=1- = 0 ta có x 2+4x-5= 0 sử dụng MTBT giải phương trình (x+2)2 x 2+4x-5= 0 Ấn MODE đến khi màn hình xuất hiện chọn số 1 màn hình xuất hiên ấn REPLAY sang phải ấn 2 và nhập hệ số 16
- Nhập hệ số a : 1 Nhập hệ số b: 4 Nhập hệ số c: -5 Ấn dấu = để được kết quả x = 1, ấn tiếp dấu = cho kết quả x = -5 Vậy phương trình có hai nghiệm: x = 1 hoặc x = -5 éx = - 5Ï - 1;2 y' = 0Û x2 +4x - 5 = 0Û ê [ ] ê ëx =1Î [ - 1;2] Nhập hàm ấn phím CALC nhập 1 cho kết quả bằng 4; ấn phím CALC nhập -1 cho kết quả bằng 8; ấn phím CALC nhập 2 cho 17 kết quả bằng . 4 17 Ta có f (1) = 4; f (- 1) =8; f (2) = 4 Vậy Max f (x) =8; Min f (x) = 4 [ - 1;2] [ - 1;2] Câu 4. 1. Sư dụng MTBT giải phương trình mũ 25x - 26.5x +25= 0 Đặt t =5x , t >0 ta có t 2 - 26t+25= 0 sử dụng MTBT để giải phương trinh bậc hai ẩn t. Ấn MODE đến khi màn hình xuất hiện chọn số 1 màn hình xuất hiên ấn REPLAY sang phải ấn 2 và nhập hệ số Nhập hệ số a : 1 Nhập hệ số b: -26 Nhập hệ số c: 25 Ấn dấu = để được kết quả t = 1 ấn tiếp dấu = cho kết quả t = 25 Vậy t = 1 ta được x = 0; t = 25 ta được x = 2 2. Sư dụng MTBT để tìm số phức liên hợp của số phức Z = 5i(1-2i)+(1-i) 17
- Thực hiện: MODE chọn số 2 Nhập 5i(1-2i)+(1-i) ấn dấu “ = ” ta được kết quả: 11, ấn SHIFT và Re-lm cho ta phần ảo 4i Ta có Z = 5i(1-2i)+(1-i)=11+4i _ Vậy z =11- 4i 2.4 Hiệu quả của sáng kiến kinh nghiệm So với kết quả đã nêu thực trạng ở phần 2.2. Trong thời gian vận dụng sáng kiến kinh nghiệm này ở các lớp 12A1, 12A2 ở Trung tâm GDTX huyện Si Ma Cai, bản thân tôi đã đạt được một số kết quả như sau: Trước hết những phương pháp này rất phù hợp với chương trình môn học. Học viên có hứng thú học tập hơn, tích cực chủ động sáng tạo để mở rộng vốn hiểu biết, đồng thời cũng rất linh hoạt trong việc thực hiện nhiệm vụ lĩnh hội kiến thức và phát triển kỹ năng. Không khí học tập sôi nổi nhẹ nhàng. Học viên có cơ hội để khẳng định mình, không còn lúng túng, lo ngại khi bước vào giờ học. Số học viên khá giỏi được tăng lên, đặc biệt số học viên yếu kém cũng có phần nào hiểu và sử dụng được phương pháp này để giải bài tập. Ngoài ra việc sử dụng MTBT giải bài tập còn giúp học viên vận dụng linh hoạt các tính chất, công thức vào việc giải toán. Kết quả các bài kiểm tra có sử dụng MTBT làm công cụ hỗ trợ để giải toán trong học kỳ II, năm học 2013 – 2014 của học viên lớp 12A1 và 12A2 ở thời điểm đã áp dụng phương pháp này đã tăng vọt so với thời điểm chưa áp dụng và chưa có hướng dẫn sử dung MTBT, cụ thể: Tổng số học Kết quả viên được Giỏi Khá Trung bình Yếu Kiểm tra SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ SL Tỉ lệ 71 5 7.1% 25 35.2% 41 57.7% 0 0% 18
- 3. Kết luận Thông qua việc giảng dạy trên lớp tại trường Trung tâm GDTX huyện Si Ma Cai, tôi thấy việc cho học viên sử dụng phương pháp này rất hữu ích và cần thiết đối với giáo viên dạy môn toán. Sử dụng MTBT vào việc dạy học bộ môn Toán là một trong những biện pháp tích cực đối với việc giải toán của học viên nhằm kiểm tra kết quả đã thực hiện, và so sánh các kết quả với nhau để từ đó tìm ra cách giải đúng hơn, hoàn thiện hơn cho bài toán. Tùy theo sự hứng thú của học viên mà giáo viên có thể tổ chức ngoại khóa để mở rộng và giúp học viên có sự nhận thức phong phú hơn đối với các dạng bài tập có thể giải được, tìm được dựa vào MTBT. Sau khi thực hiện đề tài này bản thân tôi rút ra một số kinh nghiệm nhỏ như sau: Giáo viên phải luôn luôn gần gũi quan tâm đến đối tượng học viên để từ đó phát hiện ra năng khiếu học bộ môn của các em. Giáo viên là người đóng vai trò hướng dẫn học viên trong hoạt động học cho nên tránh hình thức chiếu lệ. Phải nắm bắt được đối tượng học và phân dạng bài tập cho phù hợp với đối tượng học viên. Cần nhanh nhẹn trong các thao tác để tiết kiệm tối đa thời gian cho một tiết dạy. Theo tôi, khả năng ứng dụng là rất cần thiết và cũng dễ dàng thực hiện được, qua thực hiện tôi thấy học viên rất tự tin khi tính toán kết quả bằng MTBT. Tuy nhiên, trong thực tế vẫn còn gặp đôi chút khó khăn do không phải học viên nào cũng có MTBT và tôi luôn khuyên và động viên các em nên tìm mượn MTBT của các bạn cùng lớp khác khi có tiết học toán để sử dụng. Xuất phát từ cơ sở lý luận, thực tiễn, mục đích dạy học cũng như những thành công và hạn chế trong khi thực hiện đề tài, để góp phần cho việc dạy môn toán đạt chất lượng ngày càng cải thiện bản thân tôi có những kiến nghị sau: Nhằm giúp cho học viên học tốt hơn môn học, cá nhân tôi rất mong lãnh đạo Trung tâm GDTX huyện Si Ma Cai, phòng thiết bị nên có kế hoạch mua bổ 19
- sung MTBT casio fx -500MS hoặc casio fx – 570MS để học viên có thể mượn để dùng sao cho việc nắm bắt kiến thức được dễ dàng hơn. Đề tài này này đã được sử dụng xen kẽ các tiết luyện tập trên lớp và tiết rèn kỹ năng cho học viên. Trong quá trình làm đề tài này bản thân đã có rất nhiều cố gắng nhưng không tránh khỏi những thiếu sót. Rất mong nhận được sự góp ý chân thành của các thầy cô giáo đồng nghiệp và Hội đồng chuyên môn để đề tài của tôi được hoàn thiện hơn. Tôi xin chân thành cảm ơn! Tác giả Hà Văn Thọ 20
- TÀI LIỆU THAM KHẢO 1. Giải tích 12 – Nhà xuất bản Giáo dục, năm 2007. 2. Bài tập giải rích 12 – Nhà xuất bản Giáo dục, năm 2007. 3. Hướng dẫn ôn tập môn toán lớp 12 – Nhà xuất bản giáo dục, năm 2013. 4. Đề thi tốt nghiệp môn toán 2013 – giáo dục thường xuyên. 5. Hướng dẫn sử dụng và giải toán MTBT VinaCal – TS. Trần Văn Vuông 6. Hướng dẫn sử dụng và giải toán MTBT Casio fx-500MS và Casio fx-570MS. 21
- CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc BÁO CÁO TÓM TẮT HIỆU QUẢ SÁNG KIẾN Tên sáng kiến: “ Sử dụng máy tính bỏ túi để giải đề thi tốt nghiệp môn toán THPT” Mã số: . 1. Tình trạng giải pháp đã biết: Mô tả ngắn gọn giải pháp đã biết; ưu khuyết điểm của giải pháp đã, đang được áp dụng tại cơ quan, đơn vị: * Đặt vấn đề * Giải quyết vấn đề + Cơ sở lí luận + Thực trạng của vấn đề + Các biện pháp tiến hành giải quyết vấn đề - Sơ lược về MTBT - Hướng dẫn Hv sử dụng MTBT làm bài thi môn toán - Hướng dẫn Hv sử dụng MTBT làm bài thi tốt nghiệp môn toán năm 2013 GDTX + Hiệu quả của sáng kiến kinh nghiệm * Kết luận * Ưu điểm của giải pháp đã, đang được áp dụng tại cơ quan, đơn vị: - Chuyên đề giải toán trên MTBT cho Hv là một vấn đề cần thiết để Hv có thể sử dụng MTBT như một phương tiện, một công cụ, đồ dùng học tập hữu dụng trong các tình huống có liên quan đến tính toán nhằm giảm thời gian tính toán, tăng thêm thời gian để Hv luyện tập phát triển tư duy thuật toán. - Nhờ có MTBT mà nhiều vấn đề được coi là khó đối với chương trình môn toán đã được giảm nhẹ đi rất nhiều. * Khuyết điểm của giải pháp đã, đang được áp dụng tại cơ quan, đơn vị: - Phải nắm bắt được đối tượng học và phân dạng bài tập cho phù hợp với đối tượng học viên. - Học viên cần nhanh nhẹn trong các thao tác để tiết kiệm tối đa thời gian cho một tiết dạy. 2. Nội dung giải pháp đề nghị công nhận là sáng kiến: Mục đích của giải pháp; những điểm khác biệt, tính mới của giải pháp so với giải pháp đã, đang được áp dụng; mô tả chi tiết bản chất của giải pháp: Sử dụng MTBT làm công cụ hỗ trợ trong giải toán là nhằm góp phần đổi mới phương pháp dạy học, làm cho tiết học trở nên trực quan sinh động, tạo ra sự thích thú, kích thích tính tò mò, lôi kéo được sự tập trung chú ý cao của học viên góp phần nâng cao chất lượng dạy học. 3. Khả năng áp dụng của giải pháp: Trình bày về khả năng áp dụng vào 22
- thực tế của giải pháp tạo ra, có thể áp dụng cho những đối tượng nào, cơ quan, đơn vị, tổ chức nào : Thông qua việc giảng dạy trên lớp tại trường Trung tâm GDTX huyện Si Ma Cai, tôi thấy việc cho học viên sử dụng phương pháp này rất hữu ích và cần thiết đối với giáo viên dạy môn toán. 4. Hiệu quả, lợi ích thu được hoặc dự kiến có thể thu được do áp dụng giải pháp theo ý kiến của tổ chức, cá nhân đã áp dụng sáng kiến (nếu có); và theo ý kiến của tác giả sáng kiến: Từ thực tế áp dụng giảng dạy cho học viên khối 12 năm học 2013 – 2014 tôi thấy học sinh nắm bắt kiến thức một cách có hệ thống hơn, việc giải bài tập dễ hơn. Các em nhớ lâu và áp dụng tốt cho các bài kiểm tra toán và các bài kiểm tra học kỳ. 5. Những người tham gia tổ chức áp dụng sáng kiến lần đầu (nếu có): Đào Trong Cường; giáo viên dạy môn toán tại trung tâm GDTX huyện Si Ma Cai Si Ma Cai, .Ngày 01 tháng 5 năm 2015 Người báo cáo (Ký ghi rõ họ tên) (đã ký) Hà Văn Thọ THAM KHẢO HƠN 1000 SKKN TẤT CẢ CÁC MÔN HỌC THPT 23