Tài liệu ôn thi THPT Quốc gia môn Vật lý Lớp 12 - Chương 1: Dao động cơ
Bạn đang xem tài liệu "Tài liệu ôn thi THPT Quốc gia môn Vật lý Lớp 12 - Chương 1: Dao động cơ", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- tai_lieu_on_thi_thpt_quoc_gia_mon_vat_ly_lop_12_chuong_1_dao.docx
Nội dung text: Tài liệu ôn thi THPT Quốc gia môn Vật lý Lớp 12 - Chương 1: Dao động cơ
- CHUYÊN ĐỀ ÔN THI THPT QG CÓ: đủ dạng toán – phương pháp giải cụ thể- lời giải chi tiết- file Word bản đẹp “Có thể biên soạn dạy ôn thi THPT QG- soạn GA chuyên đề”, Ai cần liên hệ zalo: O937-351-107. Phía dưới là 1 đoạn xem thử MỤC LỤC CHƯƠNG 1: DAO ĐỘNG CƠ 1 Chủ đề 1. DAO ĐỘNG ĐIỀU HÒA 1 A. TÓM TẮT LÍ THUYẾT 1 B. PHƯƠNG PHÁP GIẢI CÁC DẠNG TOÁN 1 Dạng 1. CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG ĐIỀU HÒA VÀ CÁC ĐẠI LƯỢNG ĐẶC TRƯNG 1 1.2. Các phương trình độc lập với thời gian 3 2. Các bài toán sử dụng vòng tròn lượng giác 7 2.1. Chuyển động tròn đều và dao động điều hoà 7 2.2. Khoảng thòi gian để véc tơ vận tốc và gia tốc cùng chiều, ngược chiều 8 2.3. Tìm li độ và hướng chuyển động Phương pháp chung: 8 2.4. Tìm trạng thái quá khứ và tương lai 10 2.4.1. Tìm trạng thái quá khứ và tương lai đối với bài toán chưa cho biết phương trình của x, v, a, F 10 2.4.2. Tìm trạng thái quá khứ và tương lai đối với bài toán cho biết phương trình của x, v, a, F 13 2.5. Tìm số lần đi qua một vị trí nhất định trong một khoảng thời gian 19 2.6. Viết phương trình dao động điều hòa 22 BÀI TẬP TỰ LUYỆN 28 Dạng 2. BÀI TOÁN LIÊN QUAN ĐẾN THỜI GIAN 44 1. Thời gian đi từ x1 đến x2 44 1.1. Thời gian ngắn nhất đi từ x1 đến vị trí cân bằng và đến vị trí biên 44 1.2. Thời gian ngắn nhất đi từ x1 đến x2 47 1.3.Thời gian ngắn nhất liên quan đến vận tốc, động lượng 51 1.4. Thời gian ngắn nhất liên quan đến gia tốc, lực, năng lượng 54
- CHƯƠNG 1: DAO ĐỘNG CƠ Chủ đề 1. DAO ĐỘNG ĐIỀU HÒA A. TÓM TẮT LÍ THUYẾT + Dao động cơ là chuyển động qua lại của vật quanh 1 vị trí cân bằng. + Dao động tuần hoàn là dao động mà sau những khoảng thời gian bằng nhau, trạng thái dao động (vị trí, vận tốc, ) được lặp lại như cũ. + Dao động điều hòa là dao động trong đó li độ của vật là một hàm côsin (hay sin) của thời gian. x A cos t v x ' Asin t 2 a v' A cos t 2 F ma m A cos t + Nếu x Asin t thì có thể biến đổi thành x A cos t 2 x A min xmax A a 2A A O A 2 max a max A v 0 v 0 v đổi chiều v đổi chiều x 0 a 0 v A max a đổi chiều B. PHƯƠNG PHÁP GIẢI CÁC DẠNG TOÁN 1. Các phương pháp biểu diễn dao động điều hòa và các đại lượng đặc trưng 2. Bài toán liên quan đến thời gian. 3. Bài toán liên quan đến quãng đường. 4. Bài toán liên quan đến vừa thời gian và quãng đường. 5. Bài toán liên quan đến chứng minh hệ dao động điều hòa. Dạng 1. CÁC PHƯƠNG PHÁP BIỂU DIỄN DAO ĐỘNG ĐIỀU HÒA VÀ CÁC ĐẠI LƯỢNG ĐẶC TRƯNG Phương pháp giải Một dao động điều hòa có thể biểu diễn bằng: + Phương trình + Hình chiếu của chuyển động tròn đều + Véc tơ quay + Số phức. Khi giải toán nếu chúng ta sử dụng hợp lí các biểu diễn trên thì sẽ có được lời giải hay và ngắn gọn.
- 1. Các bài toán yêu cầu sử dụng linh hoạt các phương trình 1.1. Các phương trình phụ thuộc thời gian: x A cos t v x ' Asin t a v' 2A cos t F ma m2A cos t kx2 m2A2 m2A2 W cos2 t 1 cos 2t 2 t 2 2 4 mv2 m2A2 m2A2 W sin2 t 1 cos 2t 2 d 2 2 4 m2A2 kA2 W = Wt + Wd 2 2 Phương pháp chung: Đối chiếu phương trình của bài toán với phưong trình tổng quát để tìm các đại lượng. Ví dụ 1: (ĐH − 2014) Một chất điểm dao động điều hòa với phương trình x 3cos t (x tính bằng cm, t tính bằng s). Phát biểu nào sau đây đúng? A. Tốc độ cực đại của chất điểm là 9,4 cm/s. B. Chu ki của dao động là 0,5 s. C. Gia tốc của chất điểm có độ lớn cực đại là 113 cm/s2. D. Tần số của dao động là 2 Hz. Hướng dẫn Tốc độ cực đại: vmax = A = 9,4 cm/s => Chọn A. Ví dụ 2: (ĐH − 2012) Một vật nhỏ có khối lượng 250 g dao động điều hòa dưới tác dụng của một lực kéo về có biểu thức F = − 0,4cos4t (N) (t đo bằng s). Dao động của vật có biên độ là A. 8 cm. B. 6 cm. C. 12 cm. D. 10 cm. Hướng dẫn Đối chiếu F = − 0,4cos4t (N) với biểu thức tổng quát F = − mω2Acos t 4 rad / s A 0,1 m 2 Chọn D m A 0,4 N Ví dụ 3: Một vật nhỏ khối lượng 0,5 (kg) dao động điều hoà có phương trình li độ x = 8cos30t (cm) (t đo bằng giây) thì lúc t = 1 (s) vật A. có li độ 4 2 (cm). B. có vận tốc − 120 cm/s. C. có gia tốc 36 3 (m/s2). D. chịu tác dụng hợp lực có độ lớn 5,55N. Hướng dẫn Đối chiếu với các phương trinh tổng quát ta tính được: x 0,08cos30t m x 0,08cos30.1 0,012 m v x ' 2,4sin 30t m / s v 2,4sin 30.1 2,37 m / s t 1 2 2 a v' 72cos30t m / s a v' 72cos30.1 11,12 m / s F ma 36cos30t N F ma 36cos30.1 5,55 N Chọn D.
- Ví dụ 4: Một chất điểm dao động điều hòa có phương trình vận tốc là v 3 cos3 t (cm/s). Gốc tọa độ ở vị trí cân bằng. Mốc thời gian được chọn vào lúc chất điểm có li độ và vận tốc là: A. x = 2cm, v = 0.B. x = 0, v = 3π cm/s. C. x= − 2 cm, v = 0. D. x = 0, v = − π cm/s. Hướng dẫn Đối chiếu với các phương trình tổng quát ta tính được: x A cos 3 t 2 v x ' 3 Asin 3 t 3 A cos 3 t 2 A 1 cm x 0 1cos 3 .0 0 2 Chọn B. v 3 cos 3 .0 3 cm / s 0 Ví dụ 5: (THPTQG – 2017) Một vật dao x(cm) động điều hòa trên trục Ox. Hình bên là đồ t(s) thị biểu diễn sự phụ thuộc của li độ x vào 0 thời gian t. Tần số góc của dao động là. A. 10 rad/s. B. 10π rad/s. 0,2 C. 5π rad/s. D. 5 rad/s. Hướng dẫn * Chu kỳ T = 0,4s 2 / T 5 rad / s Chọn C. Chú ý: Bốn trường hợp đặc biệt khi chọn gốc thời gian là lúc: vật ở vị trí biên dương và qua vị trí cân bằng theo chiều âm, vật ở biên âm và vật qua vị trí cân bằng theo chiều dương. t 2 x Asin t x A cost t t x A cost x Asin t t 2