Bài tập Đại số Lớp 8: Các phép toán về phân thức
Bạn đang xem tài liệu "Bài tập Đại số Lớp 8: Các phép toán về phân thức", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bai_tap_dai_so_lop_8_cac_phep_toan_ve_phan_thuc.doc
Nội dung text: Bài tập Đại số Lớp 8: Các phép toán về phân thức
- III. CÁC PHÉP TOÁN VỀ PHÂN THỨC Dạng 3. Qui đồng mẫu thức của nhiều phân thức Bài 1. Tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu thức chung của chúng: x xy 1 3 xy y a) , b) , c) , 16 20 4x 6y 8 15 x y xy yz xz xy yz zx d) , e) , , f) , , 2y 2x 8 12 24 2z 3x 4y Bài 2. Tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu thức chung của chúng: a) 5 , 4 , 7 b) x , y , z c) 2a , x , y 2x 4 3x 9 50 25x 4 2a 4 2a 4 a2 b2 2a 2b a2 b2 3 x 2 1 2 x4 1 d) , e) , f) , x2 1 2x 6 x2 6x 9 x2 2x 1 x2 2x x2 1 Bài 3. Qui đồng mẫu thức các phân thức sau: a) x , x 2 , 1 b) 1 , 1 , 1 2x2 7x 15 x2 3x 10 x 5 x2 3x 2 x2 5x 6 x2 4x 3 c) 3 , 2x , x d) x , y , z x3 1 x2 x 1 x 1 x2 2xy y2 z2 x2 2yz y2 z2 x2 2xz y2 z2 Dạng 4. Thực hiện các phép toán trên phân thức Bài 1. Thực hiện phép tính: x 5 1 x x y 2y x2 x 1 4x a) b) c) 5 5 8 8 xy xy 5xy2 x2y 4xy2 x2y x 1 x 1 x 3 5xy 4y 3xy 4y d) e) f) 3xy 3xy a b a b a b 2x2 y3 2x2 y3 2x2 xy xy y2 2y2 x2 g) x y y x x y Bài 2. Thực hiện phép tính: 2x 4 2 x 3x 2x 1 2 x x 1 x2 3 a) b) c) 10 15 10 15 20 2x 2 2 2x2 1 2x 2x 1 x 2x y x2 6 1 d) 2 e) f) 2x 2x 1 2x 4x xy y2 xy x2 x2 4x 6 3x x 2 2x2 10xy 5y x x 2y 2 1 3x x2 y2 g) h) i) x y 2xy y x x y x y x2 y2 x y Bài 3. Thực hiện phép tính: 2x y 4 1 3xy x y a) 2 2 2 2 b) x 2xy xy 2y x 4y x y y3 x3 x2 xy y2 2x y 16x 2x y 1 1 2 4 8 16 c) d) 2x2 xy y2 4x2 2x2 xy 1 x 1 x 1 x2 1 x4 1 x8 1 x16 Bài 4. Thực hiện phép tính:
- 1 3x x 3 2(x y)(x y) 2y2 3x 1 2x 3 a) b) c) 2 2 x x x y x y xy x2 1 4x 1 7 x 1 d) e) 2x y y 2x 3x 2 y 3x 2 y Bài 5. Thực hiện phép tính: 4x 1 3x 2 x 3 x 9 x 3 1 a) b) c) 2 3 x x 3 x2 3x x2 1 x2 x 1 4 10x 8 3 2x 1 2 3x x d) e) f) 3x 2 3x 2 9x2 4 2x2 2x x2 1 x 5x 5y 10x 10y 4a2 3a 5 1 2a 6 5x2 y2 3x 2y x 9y 3y g) h) i) a3 1 a2 a 1 a 1 xy y x2 9y2 x2 3xy 4 3x 2 6 3x 2 3 x 6 2 x 1 k) l) 2 m) x 1 x 2 2x 1 x 2 1 x 2 2x 1 2 x 6 2 x 6 x x2 1 5 10 15 n) a 1 a (a2 1) a3 1 Bài 6. Thực hiện phép tính: 1 6x 2x2 15x 2y2 a) . b) .3xy2 c) . x y y 7y3 x2 2x2 y 5x 10 4 2x x2 36 3 d) . e) . f) . x y 5x3 4x 8 x 2 2x 10 6 x x2 9y2 3xy 3x2 3y2 15x2y 2a3 2b3 6a 6b g) . h) . i) . x2y2 2x 6y 5xy 2y 2x 3a 3b a2 2ab b2 Bài 7. Thực hiện phép tính: 2x 5 18x2y5 25x3y5 a) : b) 16x2y2 : c) :15xy2 3 6x2 5 3 x2 y2 x y a2 ab a b x y x2 xy d) : e) : f) : 6x2y 3xy b a 2a2 2b2 y x 3x2 3y2 1 4x2 2 4x 5x 15 x 2 9 6x 48 x 2 64 g) : h) : i) : x2 4x 3x 4x 4 x 2 2x 1 7x 7 x 2 2x 1 4x 24 x 2 36 3x 21 x 2 49 3 3x 6x 2 6 k) : l) : m) : 5x 5 x 2 2x 1 5x 5 x 2 2x 1 (1 x) 2 x 1 Bài 8. Thực hiện phép tính: 1 2 x 1 3x 2x 6x 2 10x a) 2 : x 2 b) : 2 x x x 1 x 1 3x 3x 1 1 6x 9x 9 1 x 3 x x 1 x 2 x 3 c) 3 : 2 d) : : x 9x x 3 x 3x 3x 9 x 2 x 3 x 1 Bài 9. Rút gọn các biểu thức sau: 1 1 x x 1 x y x a) b) x 1 x c) 1 1 1 x x 1 x 1 x y x 1 x x 1
- 2 x y a x x 1 d) x 1 e) y x f) a a x x2 2 x y x y a x x 1 x2 1 x y x y a a x Bài 10. Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên: 3 2 3 2 3 2 a) x x 2 b) x 2x 4 c) 2x x 2x 2 x 1 x 2 2x 1 3 2 4 d) 3x 7x 11x 1 e) x 16 3x 1 x4 4x3 8x2 16x 16 Bài 11. * Phân tích các phân thức sau thành tổng các phân thức mà mẫu thức là các nhị thức bậc nhất: 2 2 a) 2x 1 b) x 2x 6 c) 3x 3x 12 x2 5x 6 (x 1)(x 2)(x 4) (x 1)(x 2)x Bài 12. * Tìm các số A, B, C để có: x2 x 2 A B C x2 2x 1 A Bx C a) b) (x 1)3 (x 1)3 (x 1)2 x 1 (x 1)(x2 1) x 1 x2 1 Bài 13. * Tính các tổng: a b c a) A (a b)(a c) (b a)(b c) (c a)(c b) a2 b2 c2 b) B (a b)(a c) (b a)(b c) (c a)(c b) Bài 14. * Tính các tổng: 1 1 1 1 1 1 1 a) A HD: 1.2 2.3 3.4 n(n 1) k(k 1) k k 1 1 1 1 1 1 1 1 1 1 b) B HD: 1.2.3 2.3.4 3.4.5 n(n 1)(n 2) k(k 1)(k 2) 2 k k 2 k 1 Bài 15. * Chứng minh rằng với mọi m N , ta có: 4 1 1 a) 4m 2 m 1 (m 1)(2m 1) 4 1 1 1 b) 4m 3 m 2 (m 1)(m 2) (m 1)(4m 3) 4 1 1 1 c) 8m 5 2(m 1) 2(m 1)(3m 2) 2(3m 2)(8m 5) 4 1 1 1 d) 3m 2 m 1 3m 2 (m 1)(3m 2)
- Dạng 5. BIẾN ĐỔI BIỂU THỨC HỮU TỈ. GIÁ TRỊ CỦA PHÂN THỨC Bài 1. Thực hiện phép tính: 8 2 1 x y x y 2y2 a) b) (x2 3)(x2 1) x2 3 x 1 2(x y) 2(x y) x2 y2 x 1 x 1 3 xy (x a)(y a) (x b)(y b) c) d) x3 x3 x2 x3 2x2 x ab a(a b) b(a b) x3 x2 1 1 x3 x2 2x 20 5 3 e) f) x 1 x 1 x 1 x 1 x2 4 x 2 x 2 x y x y x2 y2 xy 1 1 1 g) . 1 . h) x y x y 2xy x2 y2 (a b)(b c) (b c)(c a) (c a)(a b) a2 (b c)2 (a b c) x2 y2 1 x2 y2 x y i) k) : (a b c)(a2 c2 2ac b2) xy x y y x x Bài 2. Rút gọn các phân thức: 2 2 2 2 a) 25x 20x 4 b) 5x 10xy 5y c) x 1 25x2 4 3x3 3y3 x3 x2 x 1 3 2 4 3 2 d) x x 4x 4 e) 4x 20x 13x 30x 9 x4 16 (4x2 1)2 Bài 3. Rút gọn rồi tính giá trị các biểu thức: a2 b2 c2 2ab 16x2 40xy x 10 a) với a 4,b 5,c 6 b) với a2 b2 c2 2ac 8x2 24xy y 3 x2 xy y2 x2 xy y2 x y x y c) với x 9,y 10 x2 x y x y Bài 4. Biểu diễn các phân thức sau dưới dạng tổng của một đa thức và một phân thức với bậc của tử thức nhỏ hơn bậc chủa mẫu thức: 2 2 4 3 2 5 4 a) x 3 b) x 1 c) x x 4x x 5 d) x 2x x 3 x2 1 x2 1 x2 1 x 1 Bài 5. Tìm các giá trị nguyên của x để biểu thức sau cũng có giá trị nguyên: 3 2 3 2 a) 1 b) 1 c) x x 2 d) x 2x 4 x 2 2x 3 x 1 x 2 3x2 3x Bài 6. Cho biểu thức:P . (x 1)(2x 6) a) Tìm điều kiện xác định của P. b) Tìm giá trị của x để P 1 . x 2 5 1 Bài 7. Cho biểu thức: P x 3 x2 x 6 2 x a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. 3 c) Tìm x để P . 4
- d) Tìm các giá trị nguyên của x để biểu thức P cũng có giá trị nguyên. e) Tính giá trị của biểu thức P khi x2 –9 0 . (a 3)2 6a 18 Bài 8. Cho biểu thức:P 1 . 2a2 6a a2 9 a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Với giá trị nào của a thì P = 0; P = 1. x x2 1 Bài 9. Cho biểu thức:P . 2x 2 2 2x2 a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. 1 c) Tìm giá trị của x để P . 2 x2 2x x 5 50 5x Bài 10. Cho biểu thức:P . 2x 10 x 2x(x 5) a) Tìm điều kiện xác định của P. b) Tìm giá trị của x để P = 1; P = –3. 2 3 6x 5 Bài 11. Cho biểu thức:P . 2x 3 2x 1 (2x 3)(2x 3) a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Tìm giá trị của x để P = –1. 1 2 2x 10 Bài 12. Cho biểu thức:P . x 5 x 5 (x 5)(x 5) a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Cho P = –3. Tính giá trị của biểu thức Q 9x2 – 42x 49 . 3 1 18 Bài 13. Cho biểu thức:P . x 3 x 3 9 x2 a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Tìm giá trị của x để P = 4. x2 2x 10 50 5x Bài 14. Cho biểu thức:P . 5x 25 x x2 5x a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Tìm giá trị của x để P = –4. 3x2 6x 12 Bài 15. Cho biểu thức: P x3 8 a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. 4001 c) Tính giá trị của P với x . 2000
- 1 x x2 x 1 2x 1 Bài 16. Cho biểu thức:P . : . 3 2 x 1 1 x x 1 x 2x 1 a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. 1 c) Tính giá trị của P khi x . 2 x2 2x x 5 50 5x Bài 17. Cho biểu thức:P . 2x 10 x 2x(x 5) a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Tìm giá trị của x để P = 0; P = 1 . 4 d) Tìm giá trị của x để P > 0; P < 0. x 1 3 x 3 4x2 4 Bài 18. Cho biểu thức:P . . 2x 2 x2 1 2x 2 5 a) Tìm điều kiện xác định của P. b) CMR: khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x? 5x 2 5x 2 x2 100 Bài 19. Cho biểu thức:P . . x2 10 x2 10 x2 4 a) Tìm điều kiện xác định của P. b) Rút gọn biểu thức P. c) Tính giá trị của P khi x = 20040. x2 10x 25 Bài 20. Cho biểu thức:P . x2 5x a) Tìm điều kiện xác định của P. 5 b) Tìm giá trị của x để P = 0; P . 2 c) Tìm giá trị nguyên của x để P cũng có giá trị nguyên.