Bài tập Đại số và Giải tích Lớp 11: Hàm số lượng giác

docx 5 trang thaodu 3360
Bạn đang xem tài liệu "Bài tập Đại số và Giải tích Lớp 11: Hàm số lượng giác", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxbai_tap_dai_so_va_giai_tich_lop_11_ham_so_luong_giac.docx

Nội dung text: Bài tập Đại số và Giải tích Lớp 11: Hàm số lượng giác

  1. Dạng 3. Xét tính đơn điệu của HSLG. Câu 1. Xét hàm số = sin trên đoạn [ ― ;0]. Khẳng định nào sau đây là đúng? A.Hàm số đồng biến trên các khoảng ― ; ― và ― ;0 . 2 2 B. Hàm số đã cho đồng biến trên khoảng ― ; ― ; nghịch biến trên khoảng ― ;0 . 2 2 C. Hàm số đã cho nghịch biến trên khoảng ― ; ― ; đồng biến trên khoảng ― ;0 . 2 2 D. Hàm số nghịch biến trên các khoảng ― ; ― và ― ;0 . 2 2 Câu 2. Xét sự biến thiên của hàm số = tan 2 trên một chu kì tuàn hoàn. Trong các kết luận sau, kết luận nào đúng? A.Hàm số đã cho đồng biến trên 0; và ; 4 4 2 B. Hàm số đã cho đồng biến trên 0; và nghịch biến trên ; 4 4 2 C. Hàm số đã cho luôn đồng biến trên 0; . 2 D. Hàm số đã cho nghịch biến trên 0; và đồng biến trên ; . 4 4 2 Câu 3. Cho hàm số = sin ― cos . Trong các kết luận sau, kết luận nào đúng? A. Hàm số đã cho đồng biến trên khoảng ― ; 3 4 4 B. Hàm số đã cho đồng biến trên khoảng 3 ; 7 4 4 C.Hàm số đã cho có tập giá trị là [ ―1;1]. D. Hàm số đã cho nghịch biến trên khoảng ― ; 7 . 4 4 Câu 4. Xét hai mệnh đề sau: 1 (I) ∀ ∈ ; 3 : à 푠ố = 푖ả . 2 sin 1 (II) ∀ ∈ ; 3 : à 푠ố = 푖ả . 2 cos Mệnh đề nào trong các mệnh đề trên là đúng? A.Chỉ (I) đúng. B.Chỉ (II) đúng. C.Cả (I) và (II) sai. D.Cả (I) và (II) đúng. Câu 5. Khẳng định nào sau đây đúng? A. = |tan | đồng biến trong ― ; . 2 2 B. = |tan | là hàm số chẵn trên = ℝ\ + | ∈ ℤ 2 C. = |tan | có đồ thị đối xứng qua gốc tọa độ. 1 | P a g e
  2. D. = |tan | luôn nghịch biến trong ― ; . 2 2 Câu 6. Hàm số = sin 2 nghịch biến trong khoảng nào sau đây ( ∈ ℤ)? A.( 2 ; + 2 ) B. + 2 ; 3 + 2 2 2 C. + ; 3 + D. ― + ; + . 4 4 4 4 Câu 7. Cho hàm số = 4sin + cos ― ― sin 2 . Kết luận nào sau đây là đúng về sự biến 6 6 thiên của hàm số đã cho? A.Hàm số đã cho đồng biến trên các khoảng 0; và 3 ; . 4 4 B. Hàm số đã cho đồng biến trên (0; ). C.Hàm số đã cho nghịch biến trên khoảng 0; 3 . 4 D. Hàm số đã cho đồng biến trên 0; và nghịch biến trên ; . 4 4 Câu 8. Với ∈ ℤ, kết luận nào sau đây về hàm số = tan 2 là sai? A.Hàm số = tan 2 là hàm số tuần hoàn với chu kì = 2. B. Hàm số = tan 2 luôn đồng biến trên mỗi khoảng ― + ; + . 2 2 2 2 C. Hàm số = tan 2 nhận mỗi đường thẳng = 4 + 2 là một đường tiệm cận. D. Hàm số = tan 2 là hàm số lẻ. Câu 9. Để hàm số = sin + cos tăng, ta chọn thuộc khoảng nào? A. ― 3 + 2 ; + 2 B. ― 3 + ; + 4 4 4 4 C. ― + 2 ; + 2 D. ( + 2 ;2 + 2 ). 2 2 Câu 10. Cho hàm số = cos . Bảng biến thiên của hàm số trên đoạn [ ― ; ] là: 2 Câu 11. Xét hai mệnh đề sau: 2 | P a g e
  3. (I) Với mọi ∈ ― ; hàm số = 푡 푛2 là hàm tăng. 2 2 (II) Với mọi ∈ ― ; hàm số = 푠푖푛2 là hàm tăng. 2 2 Phương án nào trong các phương án sau là phương án đúng? A.Chỉ (I) đúng B.Chỉ (II) đúng C.Cả 2 sai. D.Cả hai đúng. Câu 12. (Đề KSCL giữa kì, THPT Lý Thái Tổ, Bắc Ninh, 2018-2019). Trong các hàm số sau hàm số nào đồng biến trên khoảng ( ― ;0)? A. = 2 B. = cos C. = sin D. = tan . Câu 13. Chọn khẳng định đúng trong các khẳng định sau: 1 A.Không có một giá trị nào của ∈ ; để cos = ― . 2 2 B.Hàm số = cos nghịch biến trên khoảng ; . 2 C. Hàm số = cos luôn có giá trị dương với mọi ∈ ; . 2 D. Hàm số = cos đồng biến trên khoảng ; . 2 Câu 14. Hàm số = tan đồng biến trên khoảng nào dưới đây? A.(0; ) B. ― 3 ; ― C. ― 3 ; D.( ―2 ; ― ). 2 2 2 2 Câu 15. Xét hàm số = sin trên đoạn [ ― ;0]. Khẳng định nào sau đây đúng? A.Hàm số đã cho nghịch biến trên khoảng ― ; ― ; đồng biến trên khoảng ― ;0 . 2 2 B. Hàm số đã cho đồng biến trên khoảng ― ; ― ; nghịch biến trên khoảng ― ;0 . 2 2 C.Hàm số đã cho nghịch biến trên mỗi khoảng ― ; ― và ― ;0 . 2 2 D. Hàm số đã cho đồng biến trên mỗi khoảng ― ; ― và ― ;0 . 2 2 BÀI TẬP VỀ NHÀ. Câu 1. Xét hàm số = cos trên đoạn [ ― ; ]. Khẳng định nào sau đây là đúng? A.Hàm số đã cho nghịch biến trên các khoảng ( ― ;0) và (0; ). B. Hàm số đã cho đồng biến trên khoảng ( ― ;0) và nghịch biến trên khoảng (0; ). C. Hàm số đã cho nghịch biến trên khoảng ( ― ;0) và đồng biến trên khoảng (0; ). D. Hàm số luôn đồng biến trên các khoảng ( ― ;0) và (0; ). Câu 2. Xét sự biến thiên của hàm số = 1 ― sin trên một chu kì tuần hoàn của nó. Trong các kết luận sau, kết luận nào sai? 3 | P a g e
  4. A. Hàm số đã cho nghịch biến trên khoảng ― ;0 . 2 B. Hàm số đã cho nghịch biến trên khoảng 0; . 2 C. Hàm số đã cho đồng biến trên khoảng ; . 2 D. Hàm số đã cho nghịch biến trên khoảng ; 3 . 2 2 Câu 3. Chọn câu đúng: A.Hàm số = tan luôn luôn tăng. B. Hàm số = tan luôn luôn tăng trên từng khoảng xác định. C. Hàm số = tan tăng trong các khoảng ( + 2 ;2 + 2 ), ∈ ℤ D. Hàm số = tan tăng trong các khoảng ( 2 ; + 2 ), ∈ ℤ. 1 Câu 4. Xét hai mệnh đề sau: ( ): ∀ ∈ ; 3 hàm số = giảm. 2 sin 1 ( ): ∀ ∈ ; 3 hàm số = giảm. 2 cos Hãy chọn mệnh đề đúng trong các mệnh đề trên? A.Chỉ (I) B.Chỉ (II) C.Cả 2 sai. D.Cả hai đúng. Câu 5. Hãy chọn câu sai: Trong khoảng + 2 ; + 2 , ∈ ℤ thì: 2 A.Hàm số = sin là hàm số nghịch biến. B. Hàm số = cos là hàm số nghịch biến. C. Hàm số = tan là hàm số đồng biến. D. Hàm số = cot là hàm số đồng biến. Câu 6. Bảng biến thiên của hàm số = ( ) = cos 2 trên đoạn ― ; 3 là: 2 2 Câu 7. Hàm số = cos 2 nghịch biến trong khoảng nào sau đây ( ∈ ℤ)? A. ; + B. + ; + C. ― + 2 ; + 2 D. + 2 ; 3 + 2 . 2 2 2 2 2 2 4 | P a g e
  5. Câu 8. Trong khoảng 0; , hàm số = sin ― cos là hàm số: 2 A.Đồng biến B.Nghịch biến C.Không đổi D.Vừa đồng biến, vừa nghịc biến. 5 | P a g e