Đề ôn tập học kỳ II môn Toán Lớp 11 - Đề số 12 (Có đáp án)
Bạn đang xem tài liệu "Đề ôn tập học kỳ II môn Toán Lớp 11 - Đề số 12 (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_on_tap_hoc_ky_ii_mon_toan_lop_11_de_so_12_co_dap_an.doc
Nội dung text: Đề ôn tập học kỳ II môn Toán Lớp 11 - Đề số 12 (Có đáp án)
- WWW.VNMATH.COM ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Thời gian làm bài 90 phút Đề số 12 Bài 1: Tính các giới hạn sau: 3n 1 4n x 1 2 a) lim b) lim 4n 1 3 x 3 x2 9 Bài 2: Chứng minh phương trình x3 3x 1 0 có 3 nghiệm thuộc 2;2 . Bài 3: Chứng minh hàm số sau không có đạo hàm tại x 3 x2 9 khi x 3 f (x) x 3 1 khi x = 3 Bài 4: Tính đạo hàm các hàm số sau: a) y (2x 1) 2x x2 b) y x2.cos x x 1 Bài 5: Cho hàm số y có đồ thị (H). x 1 a) Viết phương trình tiếp tuyến của (H) tại A(2; 3). 1 b) Viết phương trình tiếp tuyến của (H) biết tiếp tuyến song song với đường thẳng y x 5 . 8 Bài 6: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a, SA vuông góc với (ABCD). Gọi I, K là hình chiếu vuông góc của A lên SB, SD. a) Chứng minh các mặt bên hình chóp là các tam giác vuông. b) Chứng minh: (SAC) vuông góc (AIK). c) Tính góc giữa SC và (SAB). d) Tính khoảng cách từ A đến (SBD). Hết Họ và tên thí sinh: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBD :. . . . . . . . . . 1
- WWW.VNMATH.COM ĐÁP ÁN ĐỀ ÔN TẬP HỌC KÌ 2 – Năm học Môn TOÁN Lớp 11 Thời gian làm bài 90 phút Đề số 12 Bài 1: Tính giới hạn: n 1 3 9. 4 3n 1 4n 9.3n 1 4.4n 1 4 a) lim lim lim 4 n 1 n 1 3 4 3 4 3 1 4n 1 x 1 2 1 1 b) lim lim x 3 x2 9 x 3 (x 3) x 1 2 24 Bài 2: Chứng minh phương trình x3 3x 1 0 có 3 nghiệm thuộc 2;2 . Xem đề 11. Bài 3: Chứng minh hàm số sau không có đạo hàm tại x 3 x2 9 khi x 3 f (x) x 3 1 khi x = 3 Khi x 3 f (x) x 3 f (x) f (3) x 4 x 4 x 4 lim lim mà lim ; lim nên hàm số không có đạo x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 hàm tại x = –3. Chú ý: Có thể chứng minh hàm số f(x) không liên tục tại x = –3 f(x) không có đạo hàm tại x = –3. Bài 4: Tính đạo hàm các hàm số sau: 1 x 4x2 6x 1 a) y (2x 1) 2x x2 y'=2 2x x2 (2x 1). y' 2x x2 2x x2 b) y x2.cos x y' 2x.cos x x2 sin x x 1 2 Bài 5: y y x 1 (x 1)2 a) Tại A(2; 3) k y (2) 2 PTTT : y 2x 1 1 1 b) Vì tiếp tuyến song song với đường thằng y x 5 nên hệ số góc của tiếp tuyến là k 8 8 2 1 2 x0 3 Gọi (x ; y ) là toạ độ của tiếp điểm y (x ) k (x 1) 16 0 0 0 2 8 0 x 5 (x0 1) 0 1 1 1 Với x 3 y PTTT : y x 3 0 0 2 8 2 3 1 3 Với x 5 y PTTT : y x 5 0 0 2 8 2 2
- Bài 6: a) Chứng minh các mặt bên hình chóp là các tam giác vuông. S SA (ABCD) nên SA BC, AB BC (gt) BC (SAB) BC SB SBC vuông tại B. SA (ABCD) SA CD, CD AD (gt) I CD (SAD) CD SD SCD vuông tại D K H SA (ABCD) nên SA AB, SA AD các tam giác SAB và SAD đều vuông tại A. B b) Chứng minh: (SAC) vuông góc (AIK). A SA (ABCD) SA BD, BD AC BD (SAC) O SAB và SAD vuông cân tại A, AK SA và AI SB D C nên I và K là các trung điểm của AB và AD IK//BD mà BD (SAC) nên IK (SAC) (AIK) (SAC) c) Tính góc giữa SC và (SAB). CB AB (từ gt),CB SA (SA (ABCD)) nên CB (SAB) hình chiếu của SC trên (SAB) là SB SC,(SAB) SC,SB ·CSB BC Tam giác SAB vuông cân có AB = SA = a SB a 2 tan·CSB 2 SB d) Tính khoảng cách từ A đến (SBD). Hạ AH SO , AH BD do BD (SAC) AH (SBD) 1 1 1 1 2 3 a AH AH 2 SA2 AO2 a2 a2 a2 3 a 3 d A, SBD 3 === 3