Đề thi THPT Quốc gia môn Toán năm 2019 - Trường THPT Phạm Văn Đồng (Có đáp án)

doc 6 trang thaodu 6450
Bạn đang xem tài liệu "Đề thi THPT Quốc gia môn Toán năm 2019 - Trường THPT Phạm Văn Đồng (Có đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_thpt_quoc_gia_mon_toan_nam_2019_truong_thpt_pham_van.doc

Nội dung text: Đề thi THPT Quốc gia môn Toán năm 2019 - Trường THPT Phạm Văn Đồng (Có đáp án)

  1. SỞ GIÁO DỤC & ĐÀO TẠO KHÁNH HÒA ĐỀ THI THỬ THI THPTQG NĂM 2019 TRƯỜNG THPT PHẠM VĂN ĐỒNG Môn thi: TOÁN Thời gian : 90 phút (không kể thời gian phát đề ) Câu 1: Hàm số yđồng x3 biến 6x2 trên 20 khoảng19 nào dưới đây ? A. 5; B. 0;4 C. 1;5 D. ;5 2x 2019 Câu 2: Tìm số tiệm cận của đồ thị hàm số y . x 1 A. 1 B. 0 C. 2 D. 3 Câu 3: Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y 2x3 3x2 12x 2 trên đoạn  1;2 . Tính M – m. A. 10 B. 20 C. 9 D. 27 Câu 4: Cho đồ thị hàm số y = f(x) như hình vẽ. Mệnh đề nào dưới đây đúng ? A. Hàm số đạt cực đại tại x = 0 B. Hàm số đạt cực tiểu tại x = 0 C. Hàm số có cực đại bằng 0 D. Đồ thị hàm số có hai điểm cực đại 5 Câu 5: Cho a là số thực dương khác 1. Giá trị của biểu thức loga a. a bằng 6 5 1 B. 4 A. 5 C. 6 D. 4 1 Câu 6: Tập xác định D của hàm số y (x 1)3 là A. D = (1; +∞) B. D = R\{1} C. D = R D. D = (1;+ ∞) 2 Câu 7: Tìm tập nghiệm của phương trình 5x 625 . A. S  2 B. S  2 C. S 4 D. S 2 Câu 8: Tìm nguyên hàm của hàm số f x 5x x5 . x5 x6 x5 A. (5x x5 )dx C. B. (5x x5 )dx x.5x 1 C. ln 5 6 ln x 5x x5 C. (5x x5 )dx x.5x 1 5x4 C. D. (5x x5 )dx C. ln 5 ln x 4 dx Câu 9: Tính tích phân I = . 0 x 1 A. I = ln3 B. I = ln4 C. I = ln2. D. I = ln 5. 4 Câu 10: Phần ảo của số phức z 3 2i là 2 3i 38 47 38 38 A. - B. C. D. i 13 13 13 13 Câu 11: Thể tích V của khối hộp chữ nhật có ba kích thước lần lượt 3,4,5 bằng HĐT Trang 1/6
  2. A. VB. 120. C.V 60. VD. 17. V 30. Câu 12: Trong không gian với hệ tọa độ Oxyz, cho véc tơ d 3i 4 j 5k . Mệnh đề nào dưới đây đúng ?   A. d 3; 4;5 B. d 3; 4; 5   C. d 3;4; 5 D. d 3;4;5 Câu 13: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình: x 1 2 y 2 2 z 4 2 20. Tìm tọa độ tâm I và bán kính R của mặt cầu. A. I 1; 2;4 , R 20. B. I 1;2; 4 , R 2 5. C. I 1; 2;4 , R 2 5. D. I 1;2; 4 , R 5 2. Câu 14: Giả sử có 6 bông hoa khác nhau và 4 lọ khác nhau. Hỏi có bao nhiêu cách cắm 4 bông hoa vào 4 lọ đã cho ( mỗi lọ cắm một bông)? A. 15. B. 720. C. 30. D. 360. 1 Câu 15: Tìm công bội q và số hạng u của cấp số nhân, biết u và u 16 . 1 2 4 5 1 1 1 1 A. q ; u . B. q ; u . 2 1 2 2 1 2 1 1 C. q 4; u . D. q 4; u . 1 16 1 16 Câu 16 : Cho hàm số y f (x) xác định, lên tục trên R và có bảng biến thiên như sau Phương trình f x 0 có bao nhiêu nghiệm ? A. 2 B. 3 C. 1 D. 0 Câu 17: Đường cong trong hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào ? x 2 x 3 A. y B. y x 1 x 1 2x 3 x 3 C. y D. y x 1 x 1 x 1 Câu 18: Cho hàm số y có đồ thị là (C). Biết rằng tiếp tuyến của (C) tại điểm M (1;- 2) song ax 2 song với đường thẳng d: 3x y 4 0 . Tính a . A. a 0 B. a 2 C. a 1 D. a 1 Câu 19: Phương trình log x2 1 log x 3 có mấy nghiệm ? HĐT Trang 2/6
  3. A. 0 B. 2 C. 1 D. 3 Câu 20: Tìm tập nghiệm S của bất phương trình ln x2 1 ln x 7 . A. S ; 2  3; B. S 7; C. S 7; 1 D. S 2;3 Câu 21: Một lượng vi khuẩn ban đầu có 100 con nhưng sau 3 giờ đã tăng lên đến 8000 con. Biết rằng tốc độ phát triển tỉ lệ thuận với số lượng của chúng. Số lượng vi khuẩn sau 5 giờ là bao nhiêu ? A. 13333 con B. 39664 con C. 13166 con D. 148530 con Câu 22: Tính thể tích V của vật thể nằm giữa hai mặt phẳng vuông góc với trục Ox lần lượt tại x 0 và x , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x 0 x là một tam giác đều cạnh là 2 sin x . A. V 3 B. .V 2 3 C. . V 3 D.3 . V 4 3 4x 2 Câu 23: Cho F x là một nguyên hàm của hàm số f x và F 2 ln81 . Tính F 2 . x2 x 1 A. .F 2 2 ln 7 ln 3 B. . F 2 2ln 7 ln 9 C. .F 2 ln 7 ln 9 F 2 ln 9 . D. 4 Câu 24: Cho tích phân I tan2 xdx a b . Tính S a b . 0 1 5 3 11 A. S = B. S = C. S = D. S = 4 4 4 4 Câu 25: Cho số phức z 3 5i . Điểm nào dưới đây là điểm biểu diễn của số phức trênz mặt phẳng tọa độ ? A. M 3; 5 B. N 3;5 C. P 3;5 D. Q 3; 5 Câu 26: Tính môđun của số phức z biết:. 1 2i z 3z 8 10i A. z 10. B. z 5. C. z 10. D. z 5. Câu 27: Cho khối chóp S.ABC có SA  ABC , tam giác ABC vuông tại B , biết rằng SB a 5 AB a,AC a 3. Tính thể tích V của khối chóp S.ABC . 3 3 3 3 A. V = a 3 B. V = a 6 C. V = a 6 D. V = a 2 3 6 4 3 Câu 28: Cho hình lăng trụ tam giác đều ABC. A'B'C' có tất cả các cạnh đều bằng a . Tính diện tích S của mặt cầu ngoại tiếp hình lăng trụ theo a . 7 a2 5 a2 11 a2 A. .S B. . S C. .S 3 D.a2 . S 3 3 3 Câu 29: Một hình nón tròn xoay có đường cao h 20cm , bán kính đáy r 25cm . Tính diện tích xung quanh S của hình nón. A. S = 125 40 cm2 B. S = 124 41 cm2 C. S = 120 41 cm2 D. S = 125 41 cm2 Câu 30: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc trục Oz, biết rằng mặt phẳng (Oxy) và mặt phẳng (P) : z 2 lần lượt cắt (S) theo hai đường tròn có bán kính bằng 2 và 8. HĐT Trang 3/6
  4. Phương trình nào dưới đây là phương trình của mặt cầu (S). A. x2 y2 (z 26)2 260 B. x2 y2 (z 10)2 260 C. x2 y2 (z 6)2 260 D. x2 y2 (z 16)2 260 Câu 31: Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(2;0;0), B(0;3;1), C(-3;6;4). Gọi M là điểm nằm trên đoạn BC sao cho MB = 2MC. Tính độ dài đoạn thẳng AM. A. 3 5 B. 5 2 C. 5 3 D. 2 5 Câu 32: Trong không gian với hệ tọa độ Oxyz, tìm tọa độ giao điểm M của đường thẳng x 4 3t : y 6 3t và mặt phẳng.(P) :2x 4y 3z 2 0 z t A. M 2;0; 2 B. M 10; 12;2 C. M 4; 3; 1 D. M 1;3;4 x y 1 z 2 Câu 33: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : và mặt phẳng 1 2 3 P : x 2y 2z 3 0 . Tìm tọa độ điểm Mthuộc d , biết hoành độ của M âm và khoảng cách từ M đến (P) bằng 2. A. M 1; 3; 5 B. M 2; 3; 1 C. M 2; 5; 8 D. M 1; 5; 7 1 2 n 1 n * Câu 34: Rút gọn biểu thức A Cn 2Cn n 1 Cn nCn (n N ) . A. .A n 1 .2nB. 1 .C A D. n . 1 .2n 1 A n.2n 1 A n.2n 1 Câu 35: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật biết AB a , AD a 3 . SA  ABCD , và SA a 5 . Gọi O là giao điểm của AC và BD . Gọi là góc giữa đường thẳng SO và mặt phẳng ABCD . Tính tan . 10 5 .A. .t an B. 5 tan C. tan tan 10. 2 2 D. 3 2 1 1 Câu 36: Cho hàm số y x x mx 1 có cực đại tại x0 ; . Mệnh đề nào dưới đây đúng ? 2 2 1 7 1 7 1 1 A. 0 m B. m C. m D. 1 m 3 4 4 4 3 5 Câu 37: Cho hàm số y f x có đồ thị như hình vẽ. Tìm tất cả các giá trị thực của tham số m để phương trình f x m2 m 1 0 có 5 nghiệm phân biệt. A. m 0;1 B. m  C. m 1 D. mhoặc 2 m 1 Câu 38: Tìm tất cả các giá trị thực của tham số m để hàm số y log x luôn đồng biến trên m2 4m 4 tập xác định của nó. m 5;1 m ; 5  1; m ;1 D. m 5; A. B. C. HĐT Trang 4/6
  5. Câu 39: Cho bất phương trình m.4x 1 (4m 2)(6 2 5)x (6 2 5)x 0 . Tìm tất cả giá trị thực của tham số m để bất phương trình nghiệm đúng với mọi x ;0 . 1 3 1 3 1 3 1 3 m m m m A. 2 B. 2 C. 2 D. 2 Câu 40: Cho số phức z thỏa mãn z 3 1 và z i 3 . Gọi z1; z2 lần lượt là số phức z có môđun lớn nhất và bé nhất . Tính tổng phần thực và phần ảo của z1 2z2 bằng : A. 6 B. 10 C. 8 D. 4 Câu 41: Tính thể tích V của khối trụ ngoại tiếp hình lập phương có cạnh bằng a. a3 a3 a3 A. .V a3 B. V . C. .V D. . V 2 6 4 Câu 42: Trong không gian với hệ tọa độ Oxyz, cho các điểm A (0; 1; 2), B(2; -2; 1), C(-2; 0; 1) và mặt phẳng (P) :2x 2y z 3 0 . Gọi M là điểm thuộc mặt phẳng (P) sao cho MA = MB = MC.  Tính OM . A. . 62 B. . 70 C. . 38 D. 46. Câu 43: Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) : x 3y z 1 0và các điểm A(1;0;0) ;B(0; 2;3) . Phương trình nào dưới đây là phương trình đường thẳng d nằm trong (P ) đi qua A và khoảng cách từ B đến (P) lớn nhất? x 1 t x 1 t x 1 t x 1 7t A. y 1 t B. y t C. y t D. y 2t z t z 2t z t z t Câu 44: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a biết SA  ABCD , Đặt SA x . Tìm x để hai mặt phẳng SBC và SCD tạo với nhau góc 60o . 3a a A. x B. x a C. x D. x 2a 2 2 3 Câu 45: Cho số thực a thỏa mãn: a . Biết bốn điểm 4 P cos a;cos2 a ,Q cot a;cot2 a , R sin a;sin2 a , S tan a;tan2 a là các đỉnh của một hình thang. Tính sin 2a. A. sin 2a 2 2 2. B. sin 2a 3 2 5. C. sin 2a 3 3 6. D. sin 2a 1 3. 2 Câu 46: Cho hàm số y f x có đạo hàm f ' x x 1 x2 2x ,với mọi x ¡ .Có bao nhiêu giá trị nguyên dương của tham số thực m để hàm số y f x2 8x m có 5 điểm cực trị ? A. 16 B.15 C.17 D. 18 Câu 47: Nhà hàng có cấu trúc vỏ hình parabol chất liệu tre nứa , nằm mỗi lều là hình parabol, biết trên quần đảo Cát Bà (Hải Phòng) do công ty kiến trúc Vo rằng mặt sàn hình chữ nhật Trong Nghia Architects thiết kế. Nhìn mặt trước mặt sau của chiều rộng 3m, chiều sâu 6m, HĐT Trang 5/6
  6. chiều cao từ mặt sàn lên đỉnh của parabol là 3m. Tính thể tích V phần không gian bên trong của mỗi lều. A. V 18 m3 B. V 36 m3 C. V 6 m3 D. V 12 m3 Câu 48: Cho số phức z a bivới a 0 thỏa mãn z 2i 2 và z 1 2 z i 2 4 . Gọi (H) là tập hợp điểm biểu diễn của số phức z . Tính diện tích của (H). 4 3 A. S B. S 4 C. S D. S 2 3 2 Câu 49: Tìm tất cả các giá trị thực của tham số m để phương trình 2sin x mcos x 1 m có nghiệm x ; . 2 2 A. . 3 m 1 B. .2 m 6 C. 1 m 3 D. . 1 m 3 Câu 50: Cho hàm số f x x3 3x m 2 . Có bao nhiêu số nguyên dương m 2018 sao cho với mọi bộ ba số thực a,b,c  1;2 thì f a , f b , f c là độ dài ba cạnh một tam giác nhọn ? A. 2009. B. 2013. C. 2017. D. 2008. ĐÁP ÁN ĐỀ THPT QUỐC GIA NĂM 2019 - Môn: Toán 1 2 3 4 5 6 7 8 9 10 A C B A A A B A D A 11 12 13 14 15 16 17 18 19 20 B A C D C A A D B D 21 22 23 24 25 26 27 28 29 30 D B A C A A D A D D 31 32 33 34 35 36 37 38 39 40 B A A C A C D B B C 41 42 43 44 45 46 47 48 49 50 B A D B A B B C D D HĐT Trang 6/6