Chuyên đề bồi dưỡng học sinh giỏi Toán 8 - Phân tích đa thức thành nhân tử

doc 5 trang xuanha23 09/01/2023 4020
Bạn đang xem tài liệu "Chuyên đề bồi dưỡng học sinh giỏi Toán 8 - Phân tích đa thức thành nhân tử", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docchuyen_de_boi_duong_hoc_sinh_gioi_toan_8_phan_tich_da_thuc_t.doc

Nội dung text: Chuyên đề bồi dưỡng học sinh giỏi Toán 8 - Phân tích đa thức thành nhân tử

  1. CHUYÊN ĐỀ - PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ I. DẠNG TÍCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ: Định lí bổ sung: + Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do, q là ước dương của hệ số cao nhất + Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1 + Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì f(x) có một nhân tử là x + 1 f(1) f(-1) + Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì và đều là số nguyên. Để a - 1 a + 1 nhanh chóng loại trừ nghiệm là ước của hệ số tự do 1. Ví dụ 1: 3x2 – 8x + 4 Cách 1: Tách hạng tử thứ 2 3x2 – 8x + 4 = 3x2 – 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách 2: Tách hạng tử thứ nhất: 3x2 – 8x + 4 = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – 2 + x)(2x – 2 – x) = (x – 2)(3x – 2) Ví dụ 2: x3 – x2 - 4 Ta nhân thấy nghiệm của f(x) nếu có thì x = 1; 2; 4 , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2 Cách 1: x3 – x2 – 4 = x3 2x2 x2 2x 2x 4 x2 x 2 x(x 2) 2(x 2) = x 2 x2 x 2 Cách 2: x3 x2 4 x3 8 x2 4 x3 8 x2 4 (x 2)(x2 2x 4) (x 2)(x 2) 2 2 = x 2 x 2x 4 (x 2) (x 2)(x x 2) Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – 5 Nhận xét: 1, 5 không là nghiệm của f(x), như vậy f(x) không có nghiệm nguyên. Nên f(x) nếu có nghiệm thì là nghiệm hữu tỉ 1 Ta nhận thấy x = là nghiệm của f(x) do đó f(x) có một nhân tử là 3x – 1. Nên 3 f(x) = 3x3 – 7x2 + 17x – 5 = 3x3 x2 6x2 2x 15x 5 3x3 x2 6x2 2x 15x 5 = x2 (3x 1) 2x(3x 1) 5(3x 1) (3x 1)(x2 2x 5) Vì x2 2x 5 (x2 2x 1) 4 (x 1)2 4 0 với mọi x nên không phân tích được thành nhân tử nữa
  2. Ví dụ 4: x3 + 5x2 + 8x + 4 Nhận xét: Tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ nên đa thức có một nhân tử là x + 1 x3 + 5x2 + 8x + 4 = (x3 + x2 ) + (4x2 + 4x) + (4x + 4) = x2(x + 1) + 4x(x + 1) + 4(x + 1) = (x + 1)(x2 + 4x + 4) = (x + 1)(x + 2)2 Ví dụ 5: f(x) = x5 – 2x4 + 3x3 – 4x2 + 2 Tổng các hệ số bằng 0 thì nên đa thức có một nhân tử là x – 1, chia f(x) cho (x – 1) ta có: x5 – 2x4 + 3x3 – 4x2 + 2 = (x – 1)(x4 - x3 + 2 x2 - 2 x - 2) Vì x4 - x3 + 2 x2 - 2 x - 2 không có nghiệm nguyên cũng không có nghiệm hữu tỉ nên không phân tích được nữa Ví dụ 6: x4 + 1997x2 + 1996x + 1997 = (x4 + x2 + 1) + (1996x2 + 1996x + 1996) = (x2 + x + 1)(x2 - x + 1) + 1996(x2 + x + 1) = (x2 + x + 1)(x2 - x + 1 + 1996) = (x2 + x + 1)(x2 - x + 1997) Ví dụ 7: x2 - x - 2001.2002 = x2 - x - 2001.(2001 + 1) = x2 - x – 20012 - 2001 = (x2 – 20012) – (x + 2001) = (x + 2001)(x – 2002) II. DẠNG THÊM , BỚT CÙNG MỘT HẠNG TỬ: 1. Thêm, bớt cùng một số hạng tử để xuất hiện hiệu hai bình phương: Ví dụ 1: 4x4 + 81 = 4x4 + 36x2 + 81 - 36x2 = (2x2 + 9)2 – 36x2 = (2x2 + 9)2 – (6x)2 = (2x2 + 9 + 6x)(2x2 + 9 – 6x) = (2x2 + 6x + 9 )(2x2 – 6x + 9) Ví dụ 2: x8 + 98x4 + 1 = (x8 + 2x4 + 1 ) + 96x4 = (x4 + 1)2 + 16x2(x4 + 1) + 64x4 - 16x2(x4 + 1) + 32x4 = (x4 + 1 + 8x2)2 – 16x2(x4 + 1 – 2x2) = (x4 + 8x2 + 1)2 - 16x2(x2 – 1)2 = (x4 + 8x2 + 1)2 - (4x3 – 4x )2 = (x4 + 4x3 + 8x2 – 4x + 1)(x4 - 4x3 + 8x2 + 4x + 1) 2. Thêm, bớt cùng một số hạng tử để xuất hiện nhân tử chung Ví dụ 1: x7 + x2 + 1 = (x7 – x) + (x2 + x + 1 ) = x(x6 – 1) + (x2 + x + 1 ) 3 3 2 2 3 2 = x(x - 1)(x + 1) + (x + x + 1 ) = x(x – 1)(x + x + 1 ) (x + 1) + (x + x + 1) = (x2 + x + 1)[x(x – 1)(x3 + 1) + 1] = (x2 + x + 1)(x5 – x4 + x2 - x + 1) 7 5 7 5 2 2 Ví dụ 2: x + x + 1 = (x – x ) + (x – x ) + (x + x + 1) 3 3 2 3 2 = x(x – 1)(x + 1) + x (x – 1) + (x + x + 1) 2 4 2 2 2 = (x + x + 1)(x – 1)(x + x) + x (x – 1)(x + x + 1) + (x + x + 1) 2 5 4 2 3 2 2 5 4 3 = (x + x + 1)[(x – x + x – x) + (x – x ) + 1] = (x + x + 1)(x – x + x – x + 1) Ghi nhớ: Các đa thức có dạng x3m + 1 + x3n + 2 + 1 như: x7 + x2 + 1 ; x7 + x5 + 1 ; x8 + x4 + 1 ;
  3. x5 + x + 1 ; x8 + x + 1 ; đều có nhân tử chung là x2 + x + 1 III. DẠNG ĐẶT BIẾN PHỤ: Ví dụ 1: x(x + 4)(x + 6)(x + 10) + 128 = [x(x + 10)][(x + 4)(x + 6)] + 128 = (x2 + 10x) + (x2 + 10x + 24) + 128 Đặt x2 + 10x + 12 = y, đa thức có dạng (y – 12)(y + 12) + 128 = y2 – 144 + 128 = y2 – 16 = (y + 4)(y – 4) = ( x2 + 10x + 8 )(x2 + 10x + 16 ) = (x + 2)(x + 8)( x2 + 10x + 8 ) Ví dụ 2: A = x4 + 6x3 + 7x2 – 6x + 1 Giả sử x 0 ta viết 6 1 1 1 x4 + 6x3 + 7x2 – 6x + 1 = x2 ( x2 + 6x + 7 – + ) = x2 [(x2 + ) + 6(x - ) + 7 ] x x2 x2 x 1 1 Đặt x - = y thì x2 + = y2 + 2, do đó x x2 2 2 2 2 2 1 2 2 2 2 A = x (y + 2 + 6y + 7) = x (y + 3) = (xy + 3x) = [x(x - ) + 3x] = (x + 3x – 1) x Chú ý: Ví dụ trên có thể giải bằng cách áp dụng hằng đẳng thức như sau: A = x4 + 6x3 + 7x2 – 6x + 1 = x4 + (6x3 – 2x2 ) + (9x2 – 6x + 1 ) = x4 + 2x2(3x – 1) + (3x – 1)2 = (x2 + 3x – 1)2 Ví dụ 3: A = (x2 y2 z2 )(x y z)2 (xy yz+zx)2 2 2 2 2 2 2 2 = (x y z ) 2(xy yz+zx) (x y z ) (xy yz+zx) Đặt x2 y2 z2 = a, xy + yz + zx = b ta có A = a(a + 2b) + b2 = a2 + 2ab + b2 = (a + b)2 = ( x2 y2 z2 + xy + yz + zx)2 Ví dụ 4: B = 2(x4 y4 z4 ) (x2 y2 z2 )2 2(x2 y2 z2 )(x y z)2 (x y z)4 Đặt x4 + y4 + z4 = a, x2 + y2 + z2 = b, x + y + z = c ta có: B = 2a – b2 – 2bc2 + c4 = 2a – 2b2 + b2 - 2bc2 + c4 = 2(a – b2) + (b –c2)2 Ta lại có: a – b2 = - 2( x2 y2 y2 z2 z2 x2 ) và b –c2 = - 2(xy + yz + zx) Do đó; B = - 4( x2 y2 y2 z2 z2 x2 ) + 4 (xy + yz + zx)2 = 4x2 y2 4y2 z2 4z2 x2 4x2 y2 4y2 z2 4z2 x2 8x2 yz 8xy2 z 8xyz2 8xyz(x y z) Ví dụ 5: (a b c)3 4(a3 b3 c3 ) 12abc Đặt a + b = m, a – b = n thì 4ab = m2 – n2 m2 - n2 a3 + b3 = (a + b)[(a – b)2 + ab] = m(n2 + ). Ta có: 4
  4. m3 + 3mn2 C = (m + c)3 – 4. 4c3 3c(m2 - n2 ) = 3( - c3 +mc2 – mn2 + cn2) 4 = 3[c2(m - c) - n2(m - c)] = 3(m - c)(c - n)(c + n) = 3(a + b - c)(c + a - b)(c - a + b) IV. PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH: Ví dụ 1: x4 - 6x3 + 12x2 - 14x + 3 Nhận xét: các số 1, 3 không là nghiệm của đa thức, đa thức không có nghiệm nguyên củng không có nghiệm hữu tỉ Như vậy nếu đa thức phân tích được thành nhân tử thì phải có dạng (x2 + ax + b)(x2 + cx + d) = x4 + (a + c)x3 + (ac + b + d)x2 + (ad + bc)x + bd a c 6 ac b d 12 đồng nhất đa thức này với đa thức đã cho ta có: ad bc 14 bd 3 Xét bd = 3 với b, d Z, b 1, 3 với b = 3 thì d = 1 hệ điều kiện trên trở thành a c 6 ac 8 2c 8 c 4 a 3c 14 ac 8 a 2 bd 3 Vậy: x4 - 6x3 + 12x2 - 14x + 3 = (x2 - 2x + 3)(x2 - 4x + 1) Ví dụ 2: 2x4 - 3x3 - 7x2 + 6x + 8 Nhận xét: đa thức có 1 nghiệm là x = 2 nên có thừa số là x - 2 do đó ta có: 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + ax2 + bx + c) a 4 3 a 1 b 2a 7 = 2x4 + (a - 4)x3 + (b - 2a)x2 + (c - 2b)x - 2c b 5 c 2b 6 c 4 2c 8 Suy ra: 2x4 - 3x3 - 7x2 + 6x + 8 = (x - 2)(2x3 + x2 - 5x - 4) Ta lại có 2x3 + x2 - 5x - 4 là đa thức có tổng hệ số của các hạng tử bậc lẻ và bậc chẵn bằng nahu nên 3 2 2 có 1 nhân tử là x + 1 nên 2x + x - 5x - 4 = (x + 1)(2x - x - 4) 4 3 2 2 Vậy: 2x - 3x - 7x + 6x + 8 = (x - 2)(x + 1)(2x - x - 4) Ví dụ 3: 12x2 + 5x - 12y2 + 12y - 10xy - 3 = (a x + by + 3)(cx + dy - 1) 2 2 = acx + (3c - a)x + bdy + (3d - b)y + (bc + ad)xy – 3
  5. ac 12 a 4 bc ad 10 c 3 3c a 5 b 6 bd 12 d 2 3d b 12 12x2 + 5x - 12y2 + 12y - 10xy - 3 = (4 x - 6y + 3)(3x + 2y - 1) BÀI TẬP: Phân tích các đa thức sau thành nhân tử: 1) x3 - 7x + 6 10) 64x4 + y4 2) x3 - 9x2 + 6x + 16 11) a6 + a4 + a2b2 + b4 - b6 3) x3 - 6x2 - x + 30 12) x3 + 3xy + y3 - 1 4) 2x3 - x2 + 5x + 3 13) 4x4 + 4x3 + 5x2 + 2x + 1 5) 27x3 - 27x2 + 18x - 4 14) x8 + x + 1 6) x2 + 2xy + y2 - x - y - 12 8 4 15)7) x(x ++ 2)(x 3x +3)(x + 4 + 4)(x + 5) - 24 16)8) 3x4x42 -+ 32x 22xy2 + 1 + 11x + 37y + 7y2 +10 9) 3(x4 + x2 + 1) - (x2 + x + 1)2 17) x4 - 8x + 63