Đề cương ôn thi môn Hình học Lớp 8

doc 2 trang thaodu 5840
Bạn đang xem tài liệu "Đề cương ôn thi môn Hình học Lớp 8", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_cuong_on_thi_mon_hinh_hoc_lop_8.doc

Nội dung text: Đề cương ôn thi môn Hình học Lớp 8

  1. Bài 1: Cho hình vuông ABCD. Gọi E, K, F theo thứ tự là trung điểm của AB, BC và CD. Gọi giao điểm của CE và DK là M. a, Chưng minh AF//CE. b, Chứng minh CE vuông góc với DK và AM = AD. Bài 1 Cho ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC ,CD, DA. Gọi K là giao điểm của AC và DM, L là trung điểm của BD và CM a. MNPQ là hình gì?Vì sao? b. MDPB là hình gì?Vì sao? c. CM: AK = KL = LC. Bài 5 : (4 điểm) Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ HN  AC (N AC), kẻ HM  AB (M AB) a. Chứng minh tứ giác AMHN là hình chữ nhật b. Gọi D là điểm đối xứng với H qua M, E đối xứng với H qua N. Chứng minh tứ giác AMNE là hình bình hành. c. Chứng minh A là trung điểm của DE Bài 18: Cho hình bình hành ABCD có AD = 2AB,  A = 60o. Gọi E và F lần lượt là trung điểm của BC và AD. a. Chứng minh AE vuông góc BF. b. Chứng minh tứ giác BFDC là hình thang cân. c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật. d. Chứng minh M, E, D thẳng hàng. Bài 19: Cho tam giác ABC vuông tại A có góc BAC = 60o, kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC. a. Tính các góc BAD và DAC. b. Chứng minh tứ giác ABCD là hình thang cân. c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi. d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED Bài 20: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD. a. Các tứ giác AEFD, AECF là hình gì? Vì sao? b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật. c. Hình bình hành ABCD nói trên cần thêm điều kiện gì để EMFN là hình vuông? Bài 21: cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC. a. Xác định dạng của tứ giác AEMF, AMBH, AMCK b. chứng minh rằng H đối xứng với K qua A. c. Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông? Bài 22: Cho tam giác ABC vuông tại A. Có AB = 6cm, AC = 8cm. Gọi I, M, K lần lượt là trung điểm của AB, BC, AC.
  2. a. Chứng minh tứ giác AIMK là hình chữ nhật và tính diện tích của nó. b. Tính độ dài đoạn AM. c. Gọi P, J, H, S lần lượt là trung điểm của AI, IM, MK, AK. Chứng minh PH vuông góc với JS. Bài 23: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC. a. Chứng minh tứ giác ANDM là hình chữ nhật. b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao? c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN. Bài 5: ( 3 điểm) Cho tam giác ABC vuông tại A có AB =6cm; AC = 8 cm. Đường trung tuyến AM, qua M lần lượt kẻ các đường thẳng vuông góc với AB và AC tại E và F. a\ Tính độ dài các đoạn thẳng BC và AM? b\ Chứng minh tứ giác AEMF là hình chữ nhật. c\ Lấy điểm D đối xứng với M qua điểm F. Chứng minh tứ giác MCDA là hìnhthoi.